• Title/Summary/Keyword: hrp2+ gene

Search Result 22, Processing Time 0.026 seconds

Isolation and Characterization of hrp2+ Gene Related to SNF2 Family In Yeast (Schizosaccharomyces pombe에서 SNF2에 속하는 hrp2+ 유전자의 특성 연구)

  • Choi In Soon
    • Journal of Life Science
    • /
    • v.15 no.2 s.69
    • /
    • pp.192-196
    • /
    • 2005
  • The SNF2/SW12 family comprises proteins from a variety of species with in vivo functions, such as transcriptional regulation, maintenance of chromosome stability during mitosis, and various types of DNA repair. This study was shown the characterization of hrp2+ gene which was isolated by PCR amplification using the conserved domain of SNF2 motifs. Sequence analysis of hrp2+ gene showed striking evolutionary conservation among the SNF2 family of proteins. The transcript of hrp2+ gene was found to be a 4.7 kb as identified by Northern hybridization. To investigate the inducibility of hrp2+ gene, transcript levels were examined after treating the cells to various DNA damaging agents. The transcripts of hrp2+ were induced by UV-irradiation. But the transcripts were not induced by treatment of $ 0.25\%$ Methylmethane sulfonate (MMS). These results implied that the effects of damaging agents are complex and different regulatory pathways exist for the induction of this gene. Hrp2 protein was purified near homogeneity by combination of affinity chromatography. We tested the purified Hrp2 protein for the helicase activity in an oligonucleotide release assay. However we were unable to detect any helicase activity associated with the Hrp2 protein, indicating that the helicase motifs in Hrp2 are merely indicators of a broader DNA-dependent ATPase activity.

Characterization of hrp2 + Gene Related to SNF2 Family in Schizosaccharomyces pombe (Schizosaccharomyces pombe에서 SNF2에 속하는 hrp2+ 유전자의 특성 연구)

  • Park, In-Soon
    • Environmental Mutagens and Carcinogens
    • /
    • v.22 no.3
    • /
    • pp.137-141
    • /
    • 2002
  • The SNF2/SW12 family comprises proteins from a variety of species with in vivo functions, such as transcriptional regulation, maintenance of chromosome stability during mitosis, and various types of DNA repair. This study was shown the characterization of hrp2+ gene which was isolated by PCR amplification using the conserved domain of SNF2 motifs. Sequence analysis of hrp2+ gene showed striking evolutionary conservation among the SNF2 family of proteins. The transcript of hrp2+ gene was found to be a 4.7 kb as identified by Northern hybridization. In addition, to determine the transcription initiation site of hrp2+ gene, primer extension analysis was performed. This result showed the band of 64 bp. The transcriptional start point was mapped to a position of 47 base pair from the first ATG codon of translational initiation codon. In order to investigate the inducibility of hrp2+ gene, transcript levels were examined after treating the cells to various DNA damaging agents. The transcripts of hrp2+ were induced by UV-irradiation. But the transcripts were not induced by treatment of 0.25% Methylmethane sulfonate (MMS). These results implied that the effects of damaging agents are complex and different regulatory pathways exist for the induction of this gene.

  • PDF

Isolation and Characterization of New Family Genes of DNA Damage in Fission Yeast

  • Choi, In-Soon
    • Environmental Mutagens and Carcinogens
    • /
    • v.19 no.1
    • /
    • pp.28-33
    • /
    • 1999
  • The SNF2 family includes proteins from a variety of species with roles I cellular processes such as transcriptional regulation, recombination and various types of DNA repair. Several proteins with unknown function are also included in this family. Here, we report the cloning and characterization of hrp 2+ gene (helicase related gene from S. pombe) which was isolated by PCR amplication using the conserved domain of SNF2 motifs within the ERCC6 gene which encodes a protein involved in DNA excision repair. The hrp2+ gene was isolated by screening with yeast S. pombe genomic library. The isolated cloned contained 6.5 kb insert DNA. Southern blot analysis confirmed that S. pombe chromosome contains the same DNA as hrp2+ gene and this gene exists as a single copy in S. pombe genome. The 4.7 kb transcript of mRNA was identified by Northern blot. To examined the transcriptional regulation of hrp2+ gene, DNA damaging agents were treated. These results indicated that the hrp2+ gene may not be directly involved in DNA replication, but may be involved in damage response pathway.

The Study of Trnascriptional Regulated Gene, $hrp^{2+}$, in Yeast

  • Choi, In-Soon
    • Journal of Life Science
    • /
    • v.11 no.2
    • /
    • pp.111-115
    • /
    • 2001
  • This study was designed to clone the SNF2/SW12 helicase-related genes from the fission yeast Schizosaccha-romyces pombe and thereafter to elucidate the common functions of the proteins in this family. The $hrp^{2+}$gene was cloned by polymerase chain reaction amplification using degenerative primers from conserved SNF2 motifs within the ERCC6 gene, which encodes a protein involved in DNA excision repair. Like other SNF2/SW12 family proteins, the deduced amino acid sequence of Hrp2 contains DNA-dependent ATPase/7 helicase domains as well as the chromodomain and the DNA binding domain. This configuration is similar to that of mCHD1 (mouse chromo-ATPase/helicase-DNA-dinding protein 1), suggesting that Hrp2 is a S. pombe homolog of mCHD1, which is thought to function in altering the chromatin structure to control the gene expression. To characterize the function of Hrp2, 4 Uracil-Hrp2 fusion protein, it was purified near homogeneity by affinity chromatography on $Ni^{2+}$-NTA agarose, DEAE-Sepharose ion exchange arid Sephacryl S-200 gel filtration chromatographies. The purified fusion protein exhibited DNA-dependent ATPase activity, which was stimulated by both double-stranded and single-stranded DNA. To determine the steady-state level of $hrp^{2+}$ transcripts during growth, cells were cultured in medium and collected at every 2hr to prepare total RNAs. The northern blot analysis showed that the level of $hrp^{2+}$ transcripts reached its maximum before the cells entered the exponential growth phase and then decreased gradually, This result implies that Hrp2 may be required at early stages of cell growth.h.

  • PDF

Molecular Cloning and Characterization of DNA Repair Related Gene in Yeast

  • Kang, Seon-Ah;Park, In-Soon
    • Journal of Life Science
    • /
    • v.10 no.1
    • /
    • pp.40-44
    • /
    • 2000
  • The SNF2/SW ATPase/helicase family comprises proteins form a variety of species with in vivo functions, such as transcriptional regulation, maintenance of chromosome stability during mitosis, and various types of DNA repair. Here, we reported the characterization of h게2+gene which was iolated by PCR amplification using the conserved domain of SNF2 motifs. Sequence analysis of PCR product showed striking evolutionary conservation among the SNF2 family of proteins. Two transcripts of 6.7 and 3.4 Lb were detected by Northern blot analysis. furthermore, the intensities of these two bands were increased by ultraviolet(UV) irradiation. These results indicate that the hrp2+ is a novel member of the SNF2 family of proteins and is one of the UV-inducible genes in S. pombe. To determine the level of transcripts of hrp2+ gene during cellular growth, Northern blot analysis were performed. This result indicates that the level of hrp2+transcript reached its maximum before cells entered the exponential growth phase. This suggests that hrp2+ gene is experssed mainly at the early stage of cell growth.

Molecular Basis of the Hrp Pathogenicity of the Fire Blight Pathogen Erwinia amylovora : a Type III Protein Secretion System Encoded in a Pathogenicity Island

  • Kim, Jihyun F.;Beer, Steven V.
    • The Plant Pathology Journal
    • /
    • v.17 no.2
    • /
    • pp.77-82
    • /
    • 2001
  • Erwinia amylovora causes a devastating disease called fire blight in rosaceous trees and shrubs such as apple, pear, and raspberry. To successfully infect its hosts, the pathogen requires a set of clustered genes termed hrp. Studies on the hrp system of E. amylovora indicated that it consists of three functional classes of genes. Regulation genes including hrpS, hrpS, hrpXY, and hrpL produce proteins that control the expression of other genes in the cluster. Secretion genes, many of which named hrc, encode proteins that may form a transmembrane complex, which is devoted to type III protein secretion. Finally, several genes encode the proteins that are delivered by the protein secretion apparatus. They include harpins, DspE, and other potential effector proteins that may contribute to proliferation of E. amylovora inside the hosts. Harpins are glycine-rich heat-stable elicitors of the hypersensitive response, and induce systemic acquired resistance. The pathogenicity protein DseE is homologous and functionally similar to an avirulence protein of Pseudomonas syringae. The region encompassing the hrpldsp gene cluster of E. amylovora shows features characteristic of a genomic island : a cryptic recombinase/integrase gene and a tRNA gene are present at one end and genes corresponding to those of the Escherichia coli K-12 chromosome are found beyond the region. This island, designated the Hrp pathogenicity island, is more than 60 kilobases in size and carries as many as 60 genes.

  • PDF

Plant Cell Contact-Dependent Virulence Regulation of hrp Genes in Pseudomonas syringae pv. tabaci 11528 (Pseudomonas syringae pv. tabaci 에서 식물세포접촉에 의한 병원성 유전자의 조절)

  • Lee, Jun-Seung;Cha, Ji-Young;Baik, Hyung-Suk
    • Journal of Life Science
    • /
    • v.21 no.2
    • /
    • pp.227-234
    • /
    • 2011
  • The hrp gene cluster in the plant pathogen Pseudomonas syringae is a key determinant of pathogenicity. Recent studies have demonstrated that specific host cell induction of the Ralstonia solanacearum hrp gene cluster is controlled by the PrhA (plant regulator of hrp) receptor. To characterize the role that P. syringae PrhA plays in the virulence of plant cells, a prhA homolog was isolated from P. syringae pv. tabaci and a $\Delta$prhA mutant was constructed by allelic exchange. The $\Delta$prhA mutant had reduced virulence in the host plant, and co-culture of P. syringae pv. tabaci and plant cell suspensions induced a much higher level of hrpA gene transcription than culture in hrp-inducing minimal medium. These results indicate that PrhA of P. syringae is a putative pathogen-plant cell contact sensor, therefore, we used a hrpA-gfp reporter fusion to monitor the in situ expression of PrhA. The results of this study demonstrated that PrhA induces hrp gene expression in P. syringae pv. tabaci in the presence of plant cells.

Interaction Proteome Analysis of Xanthomonas Hrp Proteins

  • Jang, Mi;Park, Byoung-Chul;Lee, Do-Hee;Bae, Kwang-Hee;Cho, Sa-Yeon;Park, Hyun-Seok;Lee, Baek-Rak;Park, Sung-Goo
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.359-363
    • /
    • 2007
  • Because of the importance of the type III protein-secretion system in bacteria-plant interaction, its function in bacterial pathogenesis of plants has been intensively studied. To identity bacterial proteins interacting with Xanthomonas hrp gene products that are involved in pathogenicity, we performed the glutathione-bead binding analysis of Xanthomonas lysates containing GST-tagged Hrp proteins. Analysis of glutathione-bead bound proteins by 1-DE and MALDI-TOF has demonstrated that Avr proteins, RecA, and several components of the type III secretion system interact with HrpB protein. This proteomic approach could provide a powerful tool in finding interaction partners of Hrp proteins whose roles in host-pathogen interaction need further studies.

Alternative Sigma Factor HrpL of Pectobacterium carotovorum 35 is Important for the Development of Soft-rot Symptoms

  • Nam, Hyo-Song;Park, Ju-Yeon;Kang, Beom-Ryong;Lee, Sung-Hee;Cha, Jae-Soon;Kim, Young-Cheol
    • Research in Plant Disease
    • /
    • v.17 no.2
    • /
    • pp.111-120
    • /
    • 2011
  • A bacterial artificial chromosome library of Pectobacterium carotovorum 35 was constructed to characterize the genome and to sequence its hrp region. The hrp cluster of P. carotovorum 35 consisted of 26 open reading frames in five operons. A promoter-based green fluorescent protein technology was used to identify the genes regulated by the alternative sigma factor, HrpL, in P. carotovorum 35. The majority of the selected clones contained the hrpJ operon promoter sequence, which harbors a hrp box, but no putative hrp boxes were detected within the promoter sequences of two other hrpL-regulated genes encoding for pectate lyase and large repetitive protein. Although the promoters of five other hrp operons also contained hrp boxes, their expression was not HrpL-dependent in the promoter-based selection in E. coli. However, transcriptional analysis showed that expression from all operons harboring hrp boxes, except for the hrpN operon, was reduced significantly in the hrpL mutant. The severity of soft-rot symptoms when the hrpL mutant was applied to the surface of tobacco leaves, mimicking natural infection, was greatly attenuated. These results indicate that the hrpL gene of P. carotovorum 35 may be involved in the development of soft-rot symptoms.