• 제목/요약/키워드: hrp genes

검색결과 21건 처리시간 0.025초

Molecular Basis of the Hrp Pathogenicity of the Fire Blight Pathogen Erwinia amylovora : a Type III Protein Secretion System Encoded in a Pathogenicity Island

  • Kim, Jihyun F.;Beer, Steven V.
    • The Plant Pathology Journal
    • /
    • 제17권2호
    • /
    • pp.77-82
    • /
    • 2001
  • Erwinia amylovora causes a devastating disease called fire blight in rosaceous trees and shrubs such as apple, pear, and raspberry. To successfully infect its hosts, the pathogen requires a set of clustered genes termed hrp. Studies on the hrp system of E. amylovora indicated that it consists of three functional classes of genes. Regulation genes including hrpS, hrpS, hrpXY, and hrpL produce proteins that control the expression of other genes in the cluster. Secretion genes, many of which named hrc, encode proteins that may form a transmembrane complex, which is devoted to type III protein secretion. Finally, several genes encode the proteins that are delivered by the protein secretion apparatus. They include harpins, DspE, and other potential effector proteins that may contribute to proliferation of E. amylovora inside the hosts. Harpins are glycine-rich heat-stable elicitors of the hypersensitive response, and induce systemic acquired resistance. The pathogenicity protein DseE is homologous and functionally similar to an avirulence protein of Pseudomonas syringae. The region encompassing the hrpldsp gene cluster of E. amylovora shows features characteristic of a genomic island : a cryptic recombinase/integrase gene and a tRNA gene are present at one end and genes corresponding to those of the Escherichia coli K-12 chromosome are found beyond the region. This island, designated the Hrp pathogenicity island, is more than 60 kilobases in size and carries as many as 60 genes.

  • PDF

Genetic Organization of the hrp Genes Cluster in Erwinia pyrifoliae and Characterization of HR Active Domains in HrpNEp Protein by Mutational Analysis

  • Shrestha, Rosemary;Park, Duck Hwan;Cho, Jun Mo;Cho, Saeyoull;Wilson, Calum;Hwang, Ingyu;Hur, Jang Hyun;Lim, Chun Keun
    • Molecules and Cells
    • /
    • 제25권1호
    • /
    • pp.30-42
    • /
    • 2008
  • The disease-specific (dsp) region and the hypersensitive response and pathogenicity (hrp) genes, including the hrpW, $hrpN_{Ep}$, and hrpC operons have previously been sequenced in Erwinia pyrifoliae WT3 [Shrestha et al. (2005a)]. In this study, the remaining hrp genes, including the hrpC, hrpA, hrpS, hrpXY, hrpL and hrpJ operons, were determined. The hrp genes cluster (ca. 38 kb) was comprised of eight transcriptional units and contained nine hrc (hrp conserved) genes. The genetic organization of the hrp/hrc genes and their orientation for the transcriptions were also similar to and collinear with those of E. amylovora, showing ${\geq}80%$ homologies. However, ORFU1 and ORFU2 of unknown functions, present between the hrpA and hrpS operons of E. amylovora, were absent in E. pyrifoliae. To determine the HR active domains, several proteins were prepared from truncated fragments of the N-terminal and the C-terminal regions of $HrpN_{Ep}$ protein of E. pyrifoliae. The proteins prepared from the N-terminal region elicited HR, but not from those of the C-terminal region indicating that HR active domains are located in only N-terminal region of the $HrpN_{Ep}$ protein. Two synthetic oligopeptides produced HR on tobacco confirming presence of two HR active domains in the $HrpN_{Ep}$. The HR positive N-terminal fragment ($HN{\Delta}C187$) was further narrowed down by deleting C-terminal amino acids and internal amino acids to investigate whether amino acid insertion region have role in faster and stronger HR activity in $HrpN_{Ep}$ than $HrpN_{Ea}$. The $HrpN_{Ep}$ mutant proteins $HN{\Delta}C187$ (D1AIR), $HN{\Delta}C187$ (D2AIR) and $HN{\Delta}C187$ (DM41) retained similar HR activation to that of wild-type $HrpN_{Ep}$. However, the $HrpN_{Ep}$ mutant protein $HN{\Delta}C187$ (D3AIR) lacking third amino acid insertion region (102 to 113 aa) reduced HR when compared to that of wild-type $HrpN_{Ep}$. Reduction in HR elicitation could not be observed when single amino acids at different positions were substituted at third amino acids insertion region. But, substitution of amino acids at L103R, L106K and L110R showed reduction in HR activity on tobacco suggesting their importance in activation of HR faster in the $HrpN_{Ep}$ although it requires further detailed analysis.

Alternative Sigma Factor HrpL of Pectobacterium carotovorum 35 is Important for the Development of Soft-rot Symptoms

  • Nam, Hyo-Song;Park, Ju-Yeon;Kang, Beom-Ryong;Lee, Sung-Hee;Cha, Jae-Soon;Kim, Young-Cheol
    • 식물병연구
    • /
    • 제17권2호
    • /
    • pp.111-120
    • /
    • 2011
  • A bacterial artificial chromosome library of Pectobacterium carotovorum 35 was constructed to characterize the genome and to sequence its hrp region. The hrp cluster of P. carotovorum 35 consisted of 26 open reading frames in five operons. A promoter-based green fluorescent protein technology was used to identify the genes regulated by the alternative sigma factor, HrpL, in P. carotovorum 35. The majority of the selected clones contained the hrpJ operon promoter sequence, which harbors a hrp box, but no putative hrp boxes were detected within the promoter sequences of two other hrpL-regulated genes encoding for pectate lyase and large repetitive protein. Although the promoters of five other hrp operons also contained hrp boxes, their expression was not HrpL-dependent in the promoter-based selection in E. coli. However, transcriptional analysis showed that expression from all operons harboring hrp boxes, except for the hrpN operon, was reduced significantly in the hrpL mutant. The severity of soft-rot symptoms when the hrpL mutant was applied to the surface of tobacco leaves, mimicking natural infection, was greatly attenuated. These results indicate that the hrpL gene of P. carotovorum 35 may be involved in the development of soft-rot symptoms.

Transgenic Tobacco Expressing the hrpNEP Gene from Erwinia pyrifoliae Triggers Defense Responses Against Botrytis cinerea

  • Sohn, Soo-In;Kim, Yul-Ho;Kim, Byung-Ryun;Lee, Sang-Yeob;Lim, Chun Keun;Hur, Jang Hyun;Lee, Jang-Yong
    • Molecules and Cells
    • /
    • 제24권2호
    • /
    • pp.232-239
    • /
    • 2007
  • $HrpN_{EP}$, from the gram-negative pathogen, Erwinia pyrifoliae, is a member of the harpin group of proteins, inducing pathogen resistance and hypersensitive cell death in plants. When the $hrpN_{EP}$ gene driven by the OsCc1 promoter was introduced into tobacco plants via Agrobacterium-mediated transformation, their resistance to the necrotrophic fungal pathogen, Botrytis cinerea, increased. Resistance to B. cinerea was correlated with enhanced induction of SA-dependent genes such as PR-1a, PR2, PR3 and Chia5, of JA-dependent genes such as PR-1b, and of genes related to ethylene production, such as NT-EFE26, NT-1A1C, DS321, NT-ACS1 and NT-ACS2. However the expression of NPR1, which is thought to be essential for multiple-resistance, did not increase. Since the pattern of expression of defense-related genes in $hrpN_{EP}$-expressing tobacco differed from that in plants expressing $hpaG_{Xoo}$ from Xanthomonas oryzae pv. Oryzae, these results suggest that different harpins can affect the expression of different defense-related genes, as well as resistance to different plant pathogens.

Identification of hrcC, hrpF, and maA Genes of Xanthomonas campestris pv. glycines 8ra: Roles in Pathogenicity and Inducing Hypersensitive Response on Nonhost Plants

  • Park, Byoung-Keun;Ingyu Hwang
    • The Plant Pathology Journal
    • /
    • 제15권1호
    • /
    • pp.21-27
    • /
    • 1999
  • Nonpathogenic mutants of Xanthomonas campestris pv. glycines were generated with Omegon-Kim to isolate genes essential for pathogenicity and inducing hypersensitive response (HR). Three nonpathogenic multants and two mutants showing slow symptom development were isolated among 1,000 colonies tested. From two nonpathogenic mutants, 8-13 and 26-13, genes homologous to hrcC and hrpF of X. campestris pv. vesicatoria were identified. The nonpathogenic mutant 8-13 had a mutation in a gene homologous to hrpF of X. campestris pv. vesicatoria and failed to cause HR on pepper plants but still induced HR on tomato leaves. The nonpathogenic mutant 26-13 had an insertional mutation in a gene homologous to hrcC of X. campestris pv. vesicatoria and lost the ability to induce HR on pepper leaves but still caused HR on tomato plants. Unlike other phytopathogenic bacteria, the parent strain and these two mutants of X. campestris pv. glycines did not cause HR on tobacco plants. a cosmid clone, pBL1, that complemented the phenotypes of 8-13 was isolated. From the analysis of restriction enzyme mapping and deletion analyses of pBL1, a 9.0-kb Eco RI fragment restored the phenotypes of 8-13. pBL1 failed to complement the phenotypes of 26-13, indicating that the hrcC gene resides outside of the insert DNA of pBL1. One nonpathogenic mutant, 13-33, had a mutation in a gene homologous to a miaA gene encoding tRNA delta (2)-isopentenylpyrophosphate transferase of Escherichia coli. This indicated that tRNA modifications in X. campestris pv. glycines may be required for expression of genes necessary for pathogenicity. The mutant 13-33 multiplied as well as the parent strain did in the culture medium and in planta, indicating that loss of pathogenicity is not due to the inability of multiplication in vivo.

  • PDF

Isolation and Characterization of New Family Genes of DNA Damage in Fission Yeast

  • Choi, In-Soon
    • 한국환경성돌연변이발암원학회지
    • /
    • 제19권1호
    • /
    • pp.28-33
    • /
    • 1999
  • The SNF2 family includes proteins from a variety of species with roles I cellular processes such as transcriptional regulation, recombination and various types of DNA repair. Several proteins with unknown function are also included in this family. Here, we report the cloning and characterization of hrp 2+ gene (helicase related gene from S. pombe) which was isolated by PCR amplication using the conserved domain of SNF2 motifs within the ERCC6 gene which encodes a protein involved in DNA excision repair. The hrp2+ gene was isolated by screening with yeast S. pombe genomic library. The isolated cloned contained 6.5 kb insert DNA. Southern blot analysis confirmed that S. pombe chromosome contains the same DNA as hrp2+ gene and this gene exists as a single copy in S. pombe genome. The 4.7 kb transcript of mRNA was identified by Northern blot. To examined the transcriptional regulation of hrp2+ gene, DNA damaging agents were treated. These results indicated that the hrp2+ gene may not be directly involved in DNA replication, but may be involved in damage response pathway.

Functional pathogenomics of Burkhozderia glumae (oral)

  • Kim, Jinwoo;Kim, Suhyun;Yongsung Kang;Jang, Ji-Youn;Kim, Jung-Gun;Lim, Jae-Yoon;Kim, Minkyun;Ingyu Hwang
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.66.1-66
    • /
    • 2003
  • The aim of this study was to characterize the interactions of rice and Burkholderia glumae, a causal agent of bacterial grain rot of rice, at molecular levels using whole genomic sequences and to identify genes important for pathogenicity and symptom development. To do these, we sequenced whole genome of the bacterium and constructed cosmid clone profiles. We generated pools of mutants using various transposons and determined mutation sites by sequencing rescued plasmids. We focused on studying toxoflavin biosynthetic genes, quorum sensing regulation, and Hrp type III protein secretion systems. We found that two possible operons consisting of five genes are involved in toxoflavin biosynthesis and their expression is regulated by quorum sensing and LysR-type regulator, ToxR. We have isolated the nn PAI of B. glumae and characterized by mutational analyses. The hrp cluster resembled most the putative Type III secretion systems of B. pseudomallei, which is the causative agent of melioidosis, a serious disease of man and animals. The Hrp PAI core region showed high similarity to that of Ralstonia solanacearum and Xanthomonas campestris, however some aspects were dissimilar.

  • PDF

The Study of Trnascriptional Regulated Gene, $hrp^{2+}$, in Yeast

  • Choi, In-Soon
    • Journal of Life Science
    • /
    • 제11권2호
    • /
    • pp.111-115
    • /
    • 2001
  • This study was designed to clone the SNF2/SW12 helicase-related genes from the fission yeast Schizosaccha-romyces pombe and thereafter to elucidate the common functions of the proteins in this family. The $hrp^{2+}$gene was cloned by polymerase chain reaction amplification using degenerative primers from conserved SNF2 motifs within the ERCC6 gene, which encodes a protein involved in DNA excision repair. Like other SNF2/SW12 family proteins, the deduced amino acid sequence of Hrp2 contains DNA-dependent ATPase/7 helicase domains as well as the chromodomain and the DNA binding domain. This configuration is similar to that of mCHD1 (mouse chromo-ATPase/helicase-DNA-dinding protein 1), suggesting that Hrp2 is a S. pombe homolog of mCHD1, which is thought to function in altering the chromatin structure to control the gene expression. To characterize the function of Hrp2, 4 Uracil-Hrp2 fusion protein, it was purified near homogeneity by affinity chromatography on $Ni^{2+}$-NTA agarose, DEAE-Sepharose ion exchange arid Sephacryl S-200 gel filtration chromatographies. The purified fusion protein exhibited DNA-dependent ATPase activity, which was stimulated by both double-stranded and single-stranded DNA. To determine the steady-state level of $hrp^{2+}$ transcripts during growth, cells were cultured in medium and collected at every 2hr to prepare total RNAs. The northern blot analysis showed that the level of $hrp^{2+}$ transcripts reached its maximum before the cells entered the exponential growth phase and then decreased gradually, This result implies that Hrp2 may be required at early stages of cell growth.h.

  • PDF

Pseudomonas syringae pv. tabaci 에서 식물세포접촉에 의한 병원성 유전자의 조절 (Plant Cell Contact-Dependent Virulence Regulation of hrp Genes in Pseudomonas syringae pv. tabaci 11528)

  • 이준승;차지영;백형석
    • 생명과학회지
    • /
    • 제21권2호
    • /
    • pp.227-234
    • /
    • 2011
  • Pseudomonas syringae pv. tabaci는 숙주인 담배에 감염하여 들불병(wild fire)을 일으키는 식물 병원성 세균이다. 이 세균의 pathogenicity island (PAI)는 Type III secretion system 및 병원성 유전자들을 암호화하고 있으며, 병원성 조절에 있어 핵심적인 역할을 한다. 최근 식물 병원성 세균인 Ralstonia solanacearum에서 식물 세포 접촉을 매개로 하여 hrp gene cluster를 양성조절하는 PrhA (plant regulator of hrp) receptor가 발견되었다. 본 연구에서는 P. syringae에서 식물세포에 의해 hrp 유전자가 유도되는지 확인하기 위해, prhA 유사체를 동정하고 PrhA 결실돌연변이주(BL11)를 구축하였다. BL11은 숙주 감염 실험에서 병원성이 현저히 감소하였고, 식물 세포현탁액에서 hrpA 유전자의 발현수준이 hrp 유도배지에서 보다 3배 더 높게 나타났다. 이러한 결과들을 근거로 PrhA가 식물세포접촉에 의한 조절에 중요한 역할을 한다는 것을 확인하였으며, hrpA-gfp reporter fusion을 사용하여 이를 다시 검증하였다.

Molecular Cloning and Characterization of DNA Repair Related Gene in Yeast

  • Kang, Seon-Ah;Park, In-Soon
    • Journal of Life Science
    • /
    • 제10권1호
    • /
    • pp.40-44
    • /
    • 2000
  • The SNF2/SW ATPase/helicase family comprises proteins form a variety of species with in vivo functions, such as transcriptional regulation, maintenance of chromosome stability during mitosis, and various types of DNA repair. Here, we reported the characterization of h게2+gene which was iolated by PCR amplification using the conserved domain of SNF2 motifs. Sequence analysis of PCR product showed striking evolutionary conservation among the SNF2 family of proteins. Two transcripts of 6.7 and 3.4 Lb were detected by Northern blot analysis. furthermore, the intensities of these two bands were increased by ultraviolet(UV) irradiation. These results indicate that the hrp2+ is a novel member of the SNF2 family of proteins and is one of the UV-inducible genes in S. pombe. To determine the level of transcripts of hrp2+ gene during cellular growth, Northern blot analysis were performed. This result indicates that the level of hrp2+transcript reached its maximum before cells entered the exponential growth phase. This suggests that hrp2+ gene is experssed mainly at the early stage of cell growth.