• Title/Summary/Keyword: housing strength

Search Result 226, Processing Time 0.023 seconds

A Study on the Financial Strength of Households on House Investment Demand (가계 재무건전성이 주택투자수요에 미치는 영향에 관한 연구)

  • Rho, Sang-Youn;Yoon, Bo-Hyun;Choi, Young-Min
    • Journal of Distribution Science
    • /
    • v.12 no.4
    • /
    • pp.31-39
    • /
    • 2014
  • Purpose - This study investigates the following two issues. First, we attempt to find the important determinants of housing investment and to identify their significance rank using survey panel data. Recently, the expansion of global uncertainty in the real estate market has directly and indirectly influenced the Korean housing market; households demonstrate a sensitive reaction to changes in that market. Therefore, this study aims to draw conclusions from understanding how the impact of financial strength of the household is related to house investment. Second, we attempt to verify the effectiveness of diverse indices of financial strength such as DTI, LTV, and PIR as measures to monitor the housing market. In the continuous housing market recession after the global crisis, the government places top priority on residence stability. However, the government still imposes forceful restraints on indices of financial strength. We believe this study verifies the utility of these regulations when used in the housing market. Research design, data, and methodology - The data source for this study is the "National Survey of Tax and Benefit" from 2007 (1st) to 2011 (5th) by the Korea Institute of Public Finance. Based on this survey data, we use panel data of 3,838 households that have been surveyed continuously for 5 years. We sort the base variables according to relevance of house investment criteria using the decision tree model (DTM), which is the standard decision-making model for data-mining techniques. The DTM method is known as a powerful methodology to identify contributory variables for predictive power. In addition, we analyze how important explanatory variables and the financial strength index of households affect housing investment with the binary logistic multi-regressive model. Based on the analyses, we conclude that the financial strength index has a significant role in house investment demand. Results - The results of this research are as follows: 1) The determinants of housing investment are age, consumption expenditures, income, total assets, rent deposit, housing price, habits satisfaction, housing scale, number of household members, and debt related to housing. 2) The impact power of these determinants has changed more or less annually due to economic situations and housing market conditions. The level of consumption expenditure and income are the main determinants before 2009; however, the determinants of housing investment changed to indices of the financial strength of households, i.e., DTI, LTV, and PIR, after 2009. 3) Most of all, since 2009, housing loans has been a more important variable than the level of consumption in making housing market decisions. Conclusions - The results of this research show that sound financing of households has a stronger effect on housing investment than reduced consumption expenditures. At the same time, the key indices that must be monitored by the government under economic emergency conditions differ from those requiring monitoring under normal market conditions; therefore, political indices to encourage and promote the housing market must be divided based on market conditions.

Physical Properties of 50MPa and 80MPa Ternary High Strength Concretes before and after Concrete Pumping

  • Lee, Bum-Sik;Kim, Seong-Deok;Jun, Myoung-Hoon;Park, Sung-Sik;Park, Su-Hee;Jung, Sang-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.4
    • /
    • pp.451-459
    • /
    • 2012
  • At the Korea Land and Housing Corporation(LH), concretes with high design strength of 50 MPa and 80 MPa that are composed only of ordinary Portland cement, blast furnace slag, and fly ash are developed. To determine whether the developed high strength concretes have the same properties when they are produced in batch plant(B/P) condition in the ready mixed concrete plant, and as existing high strength concretes, field tests are performed and material properties are evaluated. To investigate the material properties of the high strength concretes before and after pumping, compressive strength, flowability, air content, hydration temperature, pumping and compactability are evaluated. In field tests, before and after pumping, flowability satisfied the relevant criteria. In terms of air content, while it was slightly decreased after pumping, it satisfied the requirements. Hydration temperature criteria were satisfied, and compactability was excellent as well. The study found that the developed ternary high strength concretes have the same properties as existing high strength concretes. They can also be useful for the construction of high-rise buildings, as they are economical.

A Study on Structural Simulation for Development of High Strength and Lightweight 48V MHEV Battery Housing (고강도 경량 48V MHEV 배터리 하우징 개발을 위한 구조시뮬레이션에 관한 연구)

  • Yong-Dae Kim;Jeong-Won Lee;Eui-Chul Jeong;Sung-Hee Lee
    • Design & Manufacturing
    • /
    • v.17 no.1
    • /
    • pp.48-55
    • /
    • 2023
  • In this study, on the structure simulation for manufacturing a high strength/light weight 48V battery housing for a mild hybrid vehicle was conducted. Compression analysis was performed in accordance with the international safety standards(ECE R100) for existing battery housings. The effect of plastic materials on compressive strength was analyzed. Three models of truss, honeycomb and grid rib for the battery housing were designed and the strength characteristics of the proposed models were analyzed through nonlinear buckling analysis. The effects of the previous existing rib, double-sided grid rib, double-sided honeycomb rib and double-sided grid rib with a subtractive draft for the upper cover on the compressive strength in each axial direction were examined. It was confirmed that the truss rib reinforcement of the battery housing was very effective compared to the existing model and it was also confirmed that the rib of the upper cover had no significant effect. In the results of individual 3-axis compression analysis, the compression load in the lateral long axis direction was the least and this result was found to be very important to achieve the overall goal in designing the battery housing. To reduce the weight of the presented battery housing model, the cell molding method was applied. It was confirmed that it was very effective in reducing injection pressure, clamping force and weight.

  • PDF

Examination on Application of High-Performance Concrete using Fine Fly Ash as Replacement Material of Silica Fume (고성능콘크리트의 제조에 사용되는 실리카 흄의 대체재로써 고분말 플라이애시의 적용성 검토)

  • Lee, Bum-Sik;Kim, Sang-Kyu;Kim, Sang-Youn;Choi, Sun-Mi;Lee, Gun-Su
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.9
    • /
    • pp.502-509
    • /
    • 2007
  • This paper investigated how Fine Fly Ash (FFA) with $14,000\;cm^2/g$ of Fineness affects the micro structure and material properties of High-Performance Concrete (HPC) before and after hardening from Material Test of HPC and Cement Paste. FFA is applied as a substitute of Silica Fume which is used necessarily in producing HPC. As a Material Test results, 5% FFA series specimen shows the lower fluidity than SF series specimen. When, however, the Fluidity of 10% FFA series specimen is increased reversely to the similar value of SF series specimen. The Porosity of FFA series specimen of 3 day age is displayed to $21{\sim}24%$, which is higher than $19{\sim}20%$ porosity of SF series specimen, while that of 28 day age is reached to $8{\sim}9%$, which is improved compared with 10% fo SF series specimen. It can be thought that FFA has better influence on the porosity of HPC in case of long term age. The Compressive strength of FFA series specimen shows the similar result with the property of porosity. The compressive strength of 28 day age FFA series specimen is $98{\sim}106%$ of SF series specimen and 107% of plain specimen to reveal better strength development.

Spalling Properties of 60, 80MPa High Strength Concrete with Fiber (복합섬유(PP, NY)를 혼입한 60, 80MPa 3성분계 고강도콘크리트의 내화특성)

  • Kim, Seong-Deok;Kim, Sang-Yun;Bae, Ki-Sun;Park, Su-Hee;Lee, Bum-Sik
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.4
    • /
    • pp.3-9
    • /
    • 2010
  • Fire resistance and material properties of high-strength concrete (W/B 21.5%, 28.5%) with OPC, BS and FA were tested in this study. Main factors of the test consisted of fiber mixing ratio and W/B. Two types of fiber (NY, PP) mixed with the same weight were used for the test. The fiber mixing ratios were 0%, 0.05%, 0.1%, and 0.2% of the concrete weight. After performing the test, Under the W/B level of 21.5% and 28.5%, the spalling was effectively resisted by using the high strength concrete with fiber mixing ratios of 0.05%~0.1%. Compressive strength, flowability and air content are similar those of the fiberless high-strength concrete with the same W/B.

Effects of Replacement Ratio of Recycled Coarse Aggregate on the Shear Performance of Reinforced Concrete Beams without Shear Reinforcement

  • Yun, Hyun-Do;You, Young-Chan;Lee, Do-Heon
    • Land and Housing Review
    • /
    • v.2 no.4
    • /
    • pp.471-477
    • /
    • 2011
  • This paper will describe the experimental results on the shear behaviors of reinforced concrete (RC) beam with recycled coarse aggregate (RCA). The primary objective of this research is to evaluate the influences of different RCA replacement percentage (i.e, 0%, 30%, 60%, and 100%) on the shear performance of reinforced concrete beams without shear reinforcement. Eight large-scale RC beams without shear reinforcement were manufactured and tested to shear failure. All had a rectangular cross-section with 400mm width ${\times}$ 600mm depth and 6000mm length, and were tested with a shear span-to-depth of 5.1. The results showed that the deflection and shear strength were little affected by the different RCA replacement percentage. Actual shear strength of each RCA beam was compared with the shear strength predicted using the provisions of ACI 318 code and Zsutty'e equation for shear design of RC beams. ACI 318 code predicted the shear strength of RCA reinforced concrete beams well.

Strength Estimation of T-joint Area of Composite Housing of Medium Range Surveillance Radar (중거리급 탐색레이더 복합재 하우징의 T-joint 영역 구조 강도 평가)

  • Kwon, Min-Sang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.149-158
    • /
    • 2008
  • This article provides strength estimation of T-joint area which made of composite material. Inner and outer structures of medium range surveillance radar are all made of sandwich structure which is made with composite material(CFRP) and aluminum honeycomb core. Since the radar is voluminous and has very complex inner structure, the whole structure cannot be made as one piece. Therefore, usage of T-joints is inevitable. Since some of stress concentration areas were located around T-joint area, series of strength estimations were conducted. Three different configurations were tested to improve mechanical properties(primarily on strength). The results show an improvement on strength to meet calculated strength on stress concentrated T-joint area.

Shear Strength and Seismic Behavior of the Composite Shear Wall with the Steel Plate Embedded in the RC Wall (철판삽입 합성전단벽의 전단강도와 내진거동)

  • Chun, Young-Soo;Park, Ji-Young;Lee, Jong-Yoon
    • Land and Housing Review
    • /
    • v.8 no.3
    • /
    • pp.211-221
    • /
    • 2017
  • This study proposed hybrid coupled shear wall in the steel plate insertion method, which is capable of reinforcing the shear strength of the entire wall without increasing wall thickness in the wall-slab apartment buildings. The proposed hybrid coupled shear wall was tested for its effectiveness, shear strength and seismic behavior in experiment. As a test result, the shear strength improvement by the proposed hybrid coupled shear was found effective. Integral-type of steel plate insertion was found more effective than separate-type steel plate insertion. In this case, if the stud enforcement method proposed in this study was used, the shear strength of hybrid coupled shear wall was recommended to calculate using the KBC2016 0709.4.1(3) method. The steel plate inserted in the proposed method was found to have no significant impact on the final fracture behavior and bending strength of hybrid coupled shear wall. The shear strength at the final destruction of the wall was merely about 1/50 of the entire design shear strength. Thus, it is deemed that the wall was over excessively designed regarding the shear force in the existing design method. This finding indicates further study on wall designing to ensure effective and economic designing based on appropriate strength estimation under the destruction mechanism.

Development of Polymer Mortar Floor Members for Swine Housing Reinforced by FRP (FRP 보강 폴리머 모르터를 이용한 돈사 바닥재 개발)

  • 유능환
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.4
    • /
    • pp.124-129
    • /
    • 2000
  • The objective of this study is to develop a polymer mortar floor members for wine housing with high strength and durability using unsaturated polyester resin to complement defects of conventional cement concrete. Physical and mechanical properties of the polymer mortar floor members for swine housing are also investigated. Specimens with different panel thickness and FRP reinforcement are prepared, tested, and analyzed with respect to structural behaviors. Cracking moment is mostly affected by the thickness and reinforced FRP. Data of the study can be applied to the designing and planning of floor members for swine housing.

  • PDF

Mechanical Properties of Cement Material for Energy-Foundation (EF) Structures

  • Park, Yong-Boo;Choi, Hang-Seok;Sohn, Jeong-Rak;Sim, Young-Jong;Lee, Chul-Ho
    • Land and Housing Review
    • /
    • v.3 no.1
    • /
    • pp.83-88
    • /
    • 2012
  • In this study, physical characteristics of cement and/or concrete materials that are typically used for energy-foundation (EF) structures have been studied. The thermal conductivity and structural integrity of the cement-based materials were examined, which are commonly encountered in backfilling a vertical ground heat exchangers, cast-in-place concrete piles and concrete lining in tunnel. For this purpose the thermal conductivity and unconfined compression strength of cement-based materials with various curing conditions were experimentally estimated and compared. Hydration heat generated from massive concrete in the cast-in-place concrete energy pile was observed for 4 weeks to estimate its dissipation time in the underground. The hydration heat may mask the in-situ thermal response test (TRT) result performed in the cast-in-place concrete energy pile. It is concluded that at least two weeks are needed to dissipate the hydration heat in this case. In addition, a series of numerical analysis was performed to compare the effect of thermal property of the concrete material on the cast-in-place pile.