• Title/Summary/Keyword: hot-dip coating

Search Result 74, Processing Time 0.023 seconds

Minispangling of a Hot Dip Galvanized Sheet Steel by a Solution Spray Method (수용액 분사법에 의한 용융아연 도금강판의 미니스팡글 형성)

  • 김종상;전선호;박정렬
    • Journal of Surface Science and Engineering
    • /
    • v.27 no.3
    • /
    • pp.149-157
    • /
    • 1994
  • The formation of spangles on a hot dip galvanized sheet steel by spray cooling the molten zinc coating with air, water and 2.0wt% $NH_4H_2PO_4$ solution has been studied performing laboratory experiments, and their coating properties have been evaluated. Minimized spangles were easily formed by mist spraying the solution for 1 second at the low nozzle spray pressure onto the molten zinc at 420~$422^{\circ}C$ because the solute $NH_4H_2PO_4$ in the sprayed solution imparted a highly rapid cooling effect to the coating through its endothermic de-composition reactions and because the decomposed products acted as numerous nucleation sites for the mini-mized spangles on the coating. Good surface appearances sand sound coating properties were obtained on this coating. Only regular spangles were formed on the coating by the forced convective air cooling. At the high nozzle spray pressure, zero spangles were formed on the coating by the pure water spray cooling. However, the coating had a dull and rough surface with craters sand cracks.

  • PDF

Study of Characteristics of Hot Dip Galvanized Steel Strip by Oxygen-free Finishing (비산화성 분위기에 의한 용융아연도금의 특성 연구)

  • 진영구;김흥윤
    • Journal of Surface Science and Engineering
    • /
    • v.28 no.5
    • /
    • pp.300-308
    • /
    • 1995
  • The effect of nitrogen finishing for the control of coating weight in a nitrogen sealing box on the coating surface property in hot dip galvanizing process has been studied. The coated surface is free of oxide marks and edge overcoated. The coating uniformity is excellent ; the standard deviation of the coating thickness along width of the specimen was $1~1.2\mu\textrm{m}$ in the box whereas $2.5~3\mu\textrm{m}$ in the air. Considering surface quality of the coating such as oxide mark, edge overcoated and zinc dust, the oxygen content between 40 and 200 ppm was suggested in the box in addition the oxygen content of at least 40 ppm or the minimum dew point of $-27^{\circ}C$ is required to prevent a zinc vaporization.

  • PDF

A Numerical Analysis on the Coating Thickness in Continuous Hot-Dip Galvanizing (연속 아연 도금 코-팅 두께에 관한 수치 해석적 연구)

  • Lee, Dong-Won;Shin, Seung-Young;Kim, Byung-Ji;Kwon, Young-Doo;Kwon, Soon-Bum
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2955-2960
    • /
    • 2007
  • To control the coating thickness of zinc in the process of continuous hot-dip galvanizing, it is known from early day that the gas wiping through an air knife system is the most effective because of the obtainable of uniformity of coating thickness, possibility of thin coating, working ability in high speed and simplicity of control. But, the gas wiping using in the galvanizing process brings about a problem of splashing from the strip edge for a certain high speed of coating. And, it is known that the problem of splashing is caused mainly by the existence of separation bubble at the neighbor of the strip surface. In theses connections, in the present study, we proposed two kinds of air knife systems having the same expansion rate of nozzle, and the jet structures and coating thicknesses from a conventional and new proposed nozzles are compared. In numerical analysis, the governing equations consisted of two-dimensional time dependent Navier-Stokes equations, standard ${\kappa}-{\varepsilon}$ turbulence model to solve turbulence stress and so on are employed. As a result, it is found that it had better to use the constant rate nozzle from the point view of the energy saving to obtain the same coating thickness. Also, to reduce the size of separation bubble and to enhance the cutting ability at the strip, it is recommendable to use an air knife having the constant expansion rate nozzle.

  • PDF

A NUMERICAL STUDY ON THE COATING THICKNESS IN CONTINUOUS HOT-DIP GALVANIZING (연속 아연 도금 두께에 관한 수치 해석적 연구)

  • Lee, Dong-Won;Shin, Seung-Young;Cho, Tae-Seok;Kwon, Young-Doo;Kwon, Soon-Bum
    • Journal of computational fluids engineering
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • To control the coating thickness of zinc in the process of continuous hot-dip galvanizing, it is known from early days that the gas wiping through an air knife system is the most effective because of the obtainable of uniformity of coating thickness, possibility of thin coating, working ability in high speed and simplicity of control. But, the gas wiping using in the galvanizing process brings about a problem of splashing from the strip edge for a certain high speed of coating. Also, it is known that the problem of splashing directly depends upon the galvanizing speed and nozzle stagnation pressure. In theses connections, in the present study, we proposed two kinds of air knife systems having the same expansion rate of nozzle, and the jet structures and coating thicknesses from a conventional and new proposed nozzles are compared. In numerical analysis, the governing equations consisted of two-dimensional time dependent Navier-Stokes equations, standard k-e turbulence model to solve turbulence stress and so on are employed. As a result, it is found that it had better to use the constant rate nozzle from the point view of the energy saving to obtain the same coating thickness. Also, to enhance the cutting ability at the strip, it is advisable to use an air knife with the constant expansion rate nozzle.

Benchmarking of Zinc Coatings for Corrosion Protection: A Detailed Characterization of Corrosion and Electrochemical Properties of Zinc Coatings

  • Wijesinghe, Sudesh L;Zixi, Tan
    • Corrosion Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.38-47
    • /
    • 2017
  • Due to various types of Zn coatings for many decades for various applications, it is imperative to study and compare their corrosion resistance properties of some of these. Here, we introduce a systematic methodology for evaluation and validation of corrosion protection properties of metallic coatings. According to this methodology, samples are were exposed in an advanced cyclic corrosion test chamber according to ISO 14993, and removed at the end of each withdrawal for respective corrosion and electrochemical characterization to evaluate both barrier and galvanic protection properties. Corrosion protection properties of coatings were evaluated by visual examination according to ISO 10289, mass loss and subsequent corrosion rate measurements, electrochemical properties, and advanced electrochemical scanning techniques. In this study, corrosion protection properties of a commercial zinc rich coating (ZRC) on AISI 1020 mild steel substrates were evaluated and benchmarked against hot dip galvanized (HDG). Results were correlated, and corrosion protection capabilities of the two coatings were compared. The zinc rich coating performed better than hot dip galvanized coating in terms of overall corrosion protection properties, according to the exposure and experimental conditions used in this study. It proved to be a suitable candidate to replace hot dip galvanized coatings for desired applications.

Use of High Zinc Bath Entry Strip Temperature to Solve Coating Problems

  • Sippola, Pertti;Smith, David
    • Corrosion Science and Technology
    • /
    • v.9 no.5
    • /
    • pp.175-186
    • /
    • 2010
  • The auto industry is demanding more ductile high-strength steel grades to build lighter and stronger car bodies. The hot-dip galvanizing problems of these new steel grades are creating a demand for an improved method to control zinc wettability. The simplest way to improve zinc wettability on industrial hot-dip galvanizing lines is to increase the strip immersion temperature at zinc bath entry for enhancing the aluminothermic reaction. However, this practice increases the reactivity due to overheating the zinc in the snout which induces the formation of brittle Fe-Zn compounds at the strip/coating interface with the formation of higher amounts of dross in the zinc bath and snout contamination. Thus, this simple practice can only be utilized for short production periods of one to two hours without deteriorating coating quality. This problem has been solved by employing a technique that allows the use of a higher and attuned strip immersion temperature at zinc bath entry while still maintaining a constantly low zinc bath temperature. This has been proven to provide the solution for both the improved wettability and a significant reduction in the amounts of dross in the zinc bath.

Characterization of the Galvanizing Behavior Depending on Annealing Dew Point and Chemical Composition in Dual-Phase Steels

  • Shin, K.S.;Park, S.H.;Jeon, S.H.;Bae, D.C.;Choi, Y.M.
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.247-253
    • /
    • 2010
  • The characteristics of selective oxidation prior to hot-dip galvanizing with the annealing atmosphere dew point and chemical composition in dual-phase steels and their effect on the inhibition layer formation relevant to coating adhesion have been studied using a combination of electron microscopic and surface analytical techniques. The annealed and also galvanized samples of 3 kinds of Si/Mn ratios with varied amounts of Si addition were prepared by galvanizing simulator. The dew point was controlled at soaking temperature $800^{\circ}C$ in 15%$H_2$ -85%$N_2$ atmosphere. It was shown that good adhesion factors were mainly uniformity of oxide particle distribution of low number density and low Si/Mn ratio prior to hot-dip galvanizing. Their effect was the greatly reduced coating bare spots and the formation of uniform inhibition layer leading to good adhesion of Zn overlay. The mechanism of good adhesion is suggested by two processes: the formation of inhibition layer on the oxide free surface uncovered with no $SiO_2$-containing particles in particular, and the inhibition layer bridging of oxide particles. The growth of inhibition layer was enhanced markedly by the delayed reaction of Fe and Al with the increase of Si/Mn ratio.

A Study on the Developmentment of Zero-spangle Hot Dip Galvanized Steel Sheets with High Brightness and Corrosion Resistance (고광택 고내식 용융아연도금 제로스팡글 개발에 관한 연구)

  • 진영구;김흥윤
    • Journal of Surface Science and Engineering
    • /
    • v.29 no.4
    • /
    • pp.253-260
    • /
    • 1996
  • Regular spangle hot dip galvanized steel sheets were made in the zinc bath containing a small amount of Al and with the addition of Pb, Sb, Sb-Mg, Sb-Cu and Bi respectively whose average glosses were measured. Zero-spangle hot dip galvanized steel sheets were also made by spraying a 2% $NH_4H_2PO_4$ solution on molten coating surfaces with exactly the same chemical compositions as above used for regular spangle and whose glosses and corrosion losses were also evaluated. For manufacturing zero- spangle hot dip galvanized steel sheets with high brightness, the zinc bath with 0.02%Sb and the spraying of a 2% $NH_4H_2PO_4$ solution were proposed and for better brightness and corrosion resistance, the zinc bath with 0.02% Sb-0.50%Mg and the spraying of a 2% $NH_4H_2PO_4$ solution were also proposed.

  • PDF

Preparation of silver stabilizer layer on coated conductor by continuous dip coating method using organic silver complexes (유기 은 착체 화합물을 코팅용액으로 사용하여 연속적인 담금코팅방법에 의한 은 안정화층 제조)

  • Lee, Jong-Beom;Kim, Ji-Cheol;Park, Sin-Keun;Kim, Byeong-Joo;Kim, Jae-Geun;Lee, Hee-Gyoun;Hong, Gye-Won
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.1
    • /
    • pp.1-5
    • /
    • 2010
  • Silver stabilizing layer of coated conductor has been prepared by dip coating method using organic silver complexes containing 10 wt% silver as a starting material. Coated silver complex layer was dried in situ with hot air and converted to crystalline silver by post heat treatment in flowing oxygen atmosphere. A dense continuous silver layer with good surface coverage and proper thickness of 230 nm is obtained by multiple dip coatings and heat treatments. The film heat treated at $500^{\circ}C$ showed good mechanical adhesion and crystallographic property. The interface resistivity between superconducting YBCO layer and silver layer prepared by dip coating was measured as $0.67\;{\times}\;10^{-13}\;{\Omega}m^2$. Additional protecting copper layer with the thickness of $20\;{\mu}m$ was successfully deposited by electroplating. The critical current measured with the specimen prepared by dip coating and sputtering on same quality YBCO layer showed similar value of ~140 A and proved its ability to replace sputtering method for industrial production of coated conductor.

Characteristics of Hot-Dip Znmgal Coatings with Ultra-High Corrosion Resistance

  • Sungjoo Kim;Seulgi So;Jongwon Park;Taechul Kim;Sangtae Han;Suwon Park;Heung-yun Kim;Myungsoo Kim;Doojin Paik
    • Corrosion Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.289-295
    • /
    • 2024
  • Zn-Mg-Al alloy hot-dip galvanized steel sheet has high corrosion resistance. Compared to conventional Zn coating with the same coating thickness, the high corrosion resistance Zn-Mg-Al coating is more corrosion-resistant. Various coating compositions are commercially produced and applied in diverse fields. However, these steel sheets typically contain up to 3 wt% magnesium. In recent years, there has been a growing demand for higher corrosion resistance in harsh corrosive environments. Therefore, variations in Mg and Al contents were investigated while evaluating primary properties and performance. As a result, we developed new alloy-coated steel with ultra-high corrosion resistance. A Zn-5 wt%Mg-Al coated steel sheet was evaluated for its corrosion resistance and various properties. As the amount of Mg added increased, the corrosion loss tended to decrease. The corrosion resistance of the coated steel sheet in a particular composition, the Zn-5 wt%Mg-Al coating sheet, was about 1.5 to 2 times higher than that of the conventional Zn-3 wt%Mg-Al coating sheet. Ultimately, this ultra-high corrosion-resistance coated steel sheet will provide a robust solution to conserve Zn resources and contribute to a low-carbon society.