• 제목/요약/키워드: hot pressing

검색결과 582건 처리시간 0.025초

기계적 합금화 Iron Silicide의 열간성형 및 열처리에 의한 상변화 (Phase Transformation During Hot Consolidation and Heat Treatments in Mechanically Alloyed Iron Silicide)

  • 어순철;김일호;황승준;조경원;최재화
    • 한국재료학회지
    • /
    • 제11권12호
    • /
    • pp.1068-1073
    • /
    • 2001
  • An n-type iron$silicide(Fe_{0.98}Co_{0.02}Si_2)$has been produced by mechanical alloying process and consolidated by vacuum hot pressing. Although as-milled powders after 120 hours of milling did not show an alloying progress,${\beta}-FeSi_2$phase transformation was induced by isothermal annealing at$830{\circ}C$for 1 hour, and the fully transformed${\beta}-FeSi_2$phase was obtained after 4 hours of annealing. Near fully dense specimen was obtained after vacuum hot pressing at$ 1100{\circ}C$with a stress of 60MPa. However, as-consolidated iron silicides were consisted of untransformed mixture of ${\Alpha}-Fe_2Si_5$and ${\varepsilon-FeSi$phases. Thus, isothermal annealing has been carried out to induce the transformation to a thermoelectric semiconducting${\beta}-FeSi_2$phase. The condition for${\beta}-FeSi_2$transformation was investigated by utilizing DTA, SEM, and XRD analysis. The phase transformation was shown to be taken place by a vacuum isothermal annealing at$830{\circ}C$and the transformation behaviour was investigated as a function of annealing time. The mechanical properties of${\beta}-FeSi_2$materials before and after isothermal annealing were characterized in this study.

  • PDF

가압소결에 의한 β-TCP/TiO2복합체의 제조 (Preparation of β-TCP/TiO2 Composite by Hot-Pressing)

  • 정항철;이종국
    • 한국세라믹학회지
    • /
    • 제41권3호
    • /
    • pp.202-209
    • /
    • 2004
  • 침전법 및 솔젤법에 의하여 10- l5 nm 및 500 nm 크기의 구형 TiO$_2$ 분말을 제조하고 수열합성법으로 50-70 nm 및 120-250 nm 크기의 침상 hydroxyapatite(이하 HA라 표기) 입자를 각각 제조한 다음, 두 분말의 조성비를 달리한 세 종류(HA/TiO$_2$비; 75/25, 50/50, 25/75wt%)의 HA/TiO$_2$ 복합분말을 planetary 볼밀로 혼합하여 각각 제조하였다. 복합분말을 탄소몰드에 넣고 hot-press를 사용하여 가압소결로 치밀체를 제조하였는데, 가압도중 대부분의 HA가 tricalcium phosphate(이하 TCP라 표기)로 분해되면서 $\beta$-TCP/TiO$_2$ 복합체가 제조되었다. 제조된 복합체의 미세구조와 소결밀도는 복합분말의 형태와 조성에 따라 변화하였는데, 입자가 균질하게 분산되어 있는 미세구조를 갖는 복합분말을 소결한 경우, 치밀한 소결체를 얻을 수 있었으며, 소결온도가 증가할수록 균질한 미세구조를 나타내었다. 또한 복합분말 내 HA 함량이 증가하면서 소결체의 입자크기가 증가한 반면, 소결밀도가 감소하고, 미세구조는 불균질하였다. 반대로 HA분말에 비하여 TiO$_2$분말의 함량이 큰 시편은 전체적으로 작은 입자크기와 균질한 미세구조를 나타냈으며, 소결밀도 또한 증가하였다.

액상소결법에 의한 탄화규소 제조시 소결조제와 온도의 영향 (Influence of Sintering Additives and Temperature on Fabrication of LPS-SiC)

  • 정헌채;윤한기
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.266-270
    • /
    • 2004
  • SiC materials have been extensively studied for high temperature components in advanced energy system and advanced gas turbine because it has excellent high temperature strength, low coefficient of thermal expansion, good resistance to oxidation and good thermal and chemical stability etc. However, the brittle characteristics of SiC such as low fracture toughness and low strain-to fracture still impose a severe limitation on practical applications of SiC materials. For these reasons, SiC/SiC composites can be considered as a promising for various structural materials, because of their good fracture toughness compared with monolithic SiC ceramics. But, high temperature and pressure lead to the degradation of the reinforcing jiber during the hot pressing. Therefore, reduction of sintering temperature and pressure is key requirements for the fabrication of SiC/SiC composites by hot pressing method. In the present work, monolithic Liquid Phase Sintered SiC (LPS-SiC) was fabricated by hot pressing method in Ar atmosphere at $1800^{\circ}C$ under 20MPa using $Al_2O_3,\;Y_2O_3\;and\;SiO_2$ as sintering additives in order to low sintering temperature and sintering pressure. The starting powder was high purity $\beta-SiC$ nano-powder with all average particle size of 30mm. The characterization of LPS-SiC was investigated by means of SEM and three point bending test. Base on the composition of sintering additives-, microstructure- and mechanical property correlation, tire compositions of sintering additives are discussed.

  • PDF

알루미나의 첨가가 ${\alpha}-SiC$의 가압소결 및 기계적 성질에 미치는 영향 (Effect of $Al_2O_3$ on Hot-Press of ${\alpha}-SiC$ and Mechanical Properties)

  • 이수영;고재웅;김해두
    • 한국세라믹학회지
    • /
    • 제28권7호
    • /
    • pp.561-567
    • /
    • 1991
  • Submicron ${\alpha}-SiC$ powder with $Al_2O_3$ addition was hot-pressed under the controlled heating and pressurizing schedule. $SiO_2$ layer on ${\alpha}-SiC$ powder was effective for the sintering of ${\alpha}-SiC$ powder when $Al_2O_3$ was used as an additive. Applying of pressure under the controlled schedule accelerated the rearrangment of SiC grains, yielding 98% of theoretical density of SiC even at $1900^{\circ}C$. Flexural strength of the specimen containing 2 wt% $Al_2O_3$ was increased as increasing the hot-pressing temperature up to $2050^{\circ}C$ and maximum value was 800 MPa, while the flexural strength of the specimen containing 10 wt% $Al_2O_3$ was decreased as increasing the hot-pressing temperature above $2000^{\circ}C$ due to the formation of continuous grain boundary phase. Fracture toughness of the specimens was in the range of $3.5~4.5\;MNm^{-3/2}$ regardless of the amount of $Al_2O_3$ addition.

  • PDF

가압소결법으로 제조된 알루미나 단섬유 보강 청동기지 복합재의 마모특성 (Wear Properties of the Alumina Short Fiber Reinforced Tin-Bronze Matrix Composites manufactured by Hot Pressing)

  • 최준호;허무영
    • 소성∙가공
    • /
    • 제4권4호
    • /
    • pp.398-409
    • /
    • 1995
  • The wear properties of the alumina short fiber reinforced tin-bronze matrix composites manufactured by hot pressing was studied at the room temperature and $350^{\circ}C.$ The wear loss of various specimens having different constituent and different density was examined by a pin-on-disc type wear testing machine. The results were discussed by the observation of the worn surface morphology and the analysis of the composition on the worn surfaces. Since the reinforced effect of the alumina fiber on the wear resistance was dependent on the strength of alloy matrix, the pressureless sintered composites having a lower matrix strength showed a marked increase in wear resistance by the fiber reinforcement. As the wear condition became severe, the fiber reinforcement was more effective. The delamination on the wear surface was observed in the pressureless sintered specimens having pores which are related to the initiation and the propagation of cracks. However, the wear mechanism acting on a big failure area was not found on the wear surfaces of the hot pressed specimens having a few pores.

  • PDF

Thermoelectric Properties of Half-Heusler TiCoSb Synthesized by Mechanical Alloying Process

  • Ur, Soon-Chul
    • 한국재료학회지
    • /
    • 제21권10호
    • /
    • pp.542-545
    • /
    • 2011
  • Half-Heusler alloys are a potential thermoelectric material for use in high-temperature applications. In an attempt to produce half-Heusler thermoelectric materials with fine microstructures, TiCoSb was synthesized by the mechanical alloying of stoichiometric elemental powder compositions and then consolidated by vacuum hot pressing. The phase transformations during the mechanical alloying and hot consolidation process were investigated using XRD and SEM. A single-phase, half- Heusler allow was successfully produced by the mechanical alloying process, but a minor portion of the second phase of the CoSb formation was observed after the vacuum hot pressing. The thermoelectric properties as a function of the temperature were evaluated for the hot-pressed specimens. The Seebeck coefficients in the test range showed negative values, representing n-type conductivity, and the absolute value was found to be relatively low due to the existence of the second phase. It is shown that the electrical conductivity is relatively high and that the thermal conductivities are compatibly low in MA TiCoSb. The maximum ZT value was found to be relatively low in the test temperature range, possibly due to the lower Seebeck coefficient. The Hall mobility value appeared to be quite low, leading to the lower value of Seebeck coefficient. Thus, it is likely that the single phase produced by mechanical alloying process will show much higher ZT values after an excess Ti addition. It is also believed that further property enhancement can be obtained if appropriate dopants are selectively introduced into this MA TiCoSb System.

정수압을 이용한 미세 패턴 전사 신공정 개발 (Development of New Micro Pattern Fabrication Process by U sing Isostatic Pressing)

  • 설재완;주병윤;임성한
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.267-270
    • /
    • 2009
  • In the present investigation, we are newly developing a new forming process which can fabricate micro patterns on large-area polymeric substrates for high speed mass production. The key idea of the new process is to pressurize multiple vacuum-packed substrate-mold stacks above the glass transition temperature ($T_g$) of the polymeric substrates. The new process is thought to be promising micro-pattern fabrication technique in three aspects; firstly, isostatic pressing ensures the uniform micro-pattern replicating condition regardless of the substrate area. Secondly, the control of forming condition such as temperature and pressure can realize well-defined process condition exploited in the conventional hot embossing research field. Thirdly, multiple substrates can be patterned at the same time. A prototype forming machine for the new process was developed with the design consideration realizing the present idea. With a developed machine, micro prismatic array patterns with 50 um in size were successfully made on the $380{\times}300{\times}6\;mm$ PMMA plate.

  • PDF

기계적 합금화에 의한 Ni-33.3at%Si 분말의 합성 및 소결 특성 (Synthesis of Ni-33.3at%Si Powders by MA and Their Sintering Characteristics)

  • 박상보;변창섭;김동관;이원희
    • 한국재료학회지
    • /
    • 제11권9호
    • /
    • pp.745-750
    • /
    • 2001
  • Ni-33.3at%Si elemental powder mixtures were mechanically alloyed by a high-energy ball mill, followed by CIP (cold isostatic pressing) and HIP (hot isostatic pressing) for different processing conditions. Only elemental phases (Ni and Si) were observed for the 15 min mechanically alloyed (MA 15 min) powder. but $Ni_2$Si and elemental phases were observed to coexist for the 30 min mechanically alloyed (MA 30 min) powder. Elemental Ni and $Ni_2$Si phases were observed for the HIPed compact of MA 15 min powder at 100 and 150 MPa for 2 hr at $800^{\circ}C$. Only the $Ni_2$Si phase was, however, observed for the HIPed compacts of MA 30 min powder. For the HIPed compacts, the highest sintered density was obtained to be 99.5% of theoretical density by a HIP step at $1100^{\circ}C$ at 150MPa for 2hr. The hardness values of the HIPed $Ni_2$Si compacts at $1100^{\circ}C$ at 100/150 MPa for 2 hr were higher than HRC 66. The densification and mechanical property of HIPed $Ni_2$Si compacts were found to depend on more HIP temperature than HIP pressure.

  • PDF

기계적 합금화에 의한 Ti-37.5at%Si 분말의 합성 및 소결 특성 (The Synthesis of Ti-37.5at%Si Powders by MA and Their Sintering Characteristics)

  • 이상호;변창섭;김동관
    • 한국분말재료학회지
    • /
    • 제8권4호
    • /
    • pp.223-230
    • /
    • 2001
  • Ti-37.5at%Si elemental powder mixtures were mechanically alloyed by a high-energy ball mill, followed by CIP (cold isostatic pressing) and HIP (hot isostatic pressing) for different processing conditions. Only elemental phases (Ti and Si) were observed for the 5 min mechanically alloyed (MA 5 min) powder, but only $Ti_5Si_3$phase was observed for the 30 min mechanically alloyed (MA 30 min) powder. $Ti_5Si_3$phase was observed for the HIPed compact of MA 5 min and 30 min powders at 150 and 190 MPa for 3 hr at $1000^{\circ}C$. For the HIPed compacts, the highest sintered density was obtained to be 99.5% of theoretical density by a HIP step at $1350^{\circ}C$ at 190MPa for 3hr. The hardness values of the HIPed $Ti_5Si_3$compacts at $1350^{\circ}C$ at 150/190 MPa for 3hr were higher than HRC 76. The densification and mechanical property of HIPed $Ti_5Si_3$compacts was found to depend on more HIP temperature than HIP pressure.

  • PDF

n형 $Bi_2(Te,Se)_3$ 가압소결체의 열전특성 (Thermoelectric Properties of the n-type $Bi_2(Te,Se)_3$ Processed by Hot Pressing)

  • 박동현;노명래;김민영;오태성
    • 마이크로전자및패키징학회지
    • /
    • 제17권2호
    • /
    • pp.49-54
    • /
    • 2010
  • n형 $Bi_2(Te,Se)_3$ 분말을 용해/분쇄법으로 제조하여 가압소결 후, 가압소결체의 열전특성을 $Bi_2(Te,Se)_3$ 잉곳과 비교하였으며, $Bi_2(Te,Se)_3$ 열전분말의 기계적 밀링처리가 가압소결체의 열전특성에 미치는 영향을 분석하였다. $Bi_2(Te,Se)_3$ 잉곳은 $24.2{\times}10^{-4}W/m-K^2$의 power factor를 나타내었으며, 이를 가압소결함으로써 power factor가 $27.3{\sim}32.3{\times}10^{-4}W/m-K^2$로 향상되었다. 기계적 밀링처리한 분말로 제조한 $Bi_2(Te,Se)_3$ 가압소결체는 $100^{\circ}C$에서 1.02의 무차원 성능지수를 나타내었으며, $130^{\circ}C$에서 외인성-내인성 천이거동을 나타내었다.