• 제목/요약/키워드: hot forming

검색결과 450건 처리시간 0.021초

핫블로우 포밍을 이용한 고강도 알루미늄 루프 사이드 레일 설계 (Design of Roof Side Rail by Hot Blow Forming using High Strength Aluminum)

  • 김민기;이정흠;고대철
    • 소성∙가공
    • /
    • 제32권6호
    • /
    • pp.311-320
    • /
    • 2023
  • Recently, lightweight of automotive parts has been required to solve environmental problems caused by global warming. Accordingly, research and development are proceeded on manufacturing of parts using aluminum that can replace steel for lightweight of the automotive parts. In addition, high strength aluminum can be applied to body parts in order to meet both requirements of lightening and improving crash safety of vehicle. In this study, hot blow forming of roof side rail is employed to manufacturing of the automotive parts with high strength aluminum tube. In hot blow forming, longer forming times and excessive thinning can be occurred as compared with conventional manufacturing processes. So optimization of process conditions is required to prevent excessive thinning and to uniformize thickness distribution with fast forming time. Mechanical properties of high strength aluminum are obtained from tensile test at high temperature. These properties are used for finite element(FE) analysis to investigate the effect of strain rate on thinning and thickness distribution. Variation of thickness was firstly investigated from the result of FE analysis according to tube diameter, where the shapes at cross section of roof side rail are compared with allowable dimensional tolerance. Effective tube diameter is determined when fracture and wrinkle are not occurred during hot blow forming. Also FE analysis with various pressure-time profiles is performed to investigate the their effects on thinning and thickness distribution which is quantitatively verified with thinning factor. As a results, optimal process conditions can be determined for the manufacturing of roof side rail using high strength aluminum.

알루미늄 튜브를 이용한 자동차 리어 서브 프레임의 열간가스 성형해석 (Hot Air Forming Analysis of Automotive Rear Sub Frame using Aluminum Tube)

  • 김헌영;윤석진;이기동;김양수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.26-29
    • /
    • 2008
  • Recently, the hydroforming of high strength aluminum tubes has many studies and applications in manufacturing industry, especially in automotive industry. But high strength aluminum tube has limited expansion capability at most 15% at normal temperature. New manufacturing process, called hot air forming, is introduced to apply aluminum tube to the automotive sub frame components which have complex shape and require high expansion ratio about 40%. The process is carried out at the elevated temperature above $500^{\circ}C$, so numerous material properties and process parameters related to high temperature should be investigated and determined to get a sound product. In this paper, the hot air forming process of automotive sub frame was investigated. The effect of the forming parameters such as the temperature of tool, axial feeding and gas pressure are analyzes by using explicit finite element method.

  • PDF

Effect of Hot Water and Heat Treatment on the Apatite-forming Ability of Titania Films Formed on Titanium Metal via Anodic Oxidation in Acetic Acid Solutions

  • Cui, Xinyu;Cui, Xinyu
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.36.2-36.2
    • /
    • 2011
  • Titanium and its alloys have been widely used for orthopedic implants because of their good biocompatibility. We have previously shown that the crystalline titania layers formed on the surface of titanium metal via anodic oxidation can induce apatite formation in simulated body fluid, whereas amorphous titania layers do not possess apatite-forming ability. In this study, hot water and heat treatments were applied to transform the titania layers from an amorphous structure into a crystalline structure after titanium metal had been anodized in acetic acid solution. The apatite-forming ability of titania layers subjected to the above treatments in simulated body fluid was investigated. The XRD and SEM results indicated hot water and/or heat treatment could greatly transform the crystal structure of titania layers from an amorphous structure into anatase, or a mixture of anatase and rutile.The abundance of Ti-OH groups formed by hot water treatment could contribute to apatite formation on the surface of titanium metals, and subsequent heat treatment would enhance the bond strength between the apatite layers and the titanium substrates. Thus, bioactive titanium metals could be prepared via anodic oxidation and subsequent hot water and heat treatment that would be suitable for applications under load-bearing conditions.

  • PDF

가압소결과 열간 등가압소결에 의한 세라믹 분말의 정형 성형 (Near-net-shape forming of ceramic powder under hot pressing and hot isostatic pressing)

  • 권영삼;김기태
    • 대한기계학회논문집A
    • /
    • 제21권1호
    • /
    • pp.73-82
    • /
    • 1997
  • High temperature densification behaviors of alumina powder compacts were investigated under hot pressing and hot isostatic pressing. An alumina part of valve-head shape was fabricated under hot pressing and its forming process was simulated by finite element calculation. an alumina powder compact encapsulated by a stainless steel container was also densified under hot isostatic pressing. Inhomogeneous deformations during hot isostatic pressing due to the canning effect were observed experimentally and predicted by finite element analysis.

A6061 알루미늄 합금의 다단 열간성형에 관한 연구 (Study on Multi-stage Hot Forming of A6061 Aluminum Alloy)

  • 김래형;오명환;정윤성;손성만;이문용;김지훈
    • 소성∙가공
    • /
    • 제33권3호
    • /
    • pp.161-168
    • /
    • 2024
  • Aluminum alloy sheets, compared to conventional steel sheets, face challenges in press forming due to their lower elongation. To enhance their formability, extensive research has focused on forming technologies at elevated temperatures, specifically warm forming at around 300℃ and hot forming at approximately 500℃. This study proposes that the formability of aluminum alloy sheets can be significantly enhanced using a multi-stage hot forming technique. The research also investigates whether the strength of the A6061 aluminum alloy, known for its precipitation hardening, can be maintained when formed below the precipitate solid solution temperature. In the experiments, the A6061-T6 sheet underwent heating and rapid cooling between 250 and 500℃. The mechanical properties were evaluated at each stage of the process. The findings revealed that when the initial heat treatment was below 350℃, the strength of the material remained unchanged. However, at temperatures above 400℃, there was a noticeable decrease in strength coupled with an increase in elongation. Conversely, when the secondary heat treatment was conducted at temperatures of 350℃ or lower, the strength remained comparable to that of the initial heat treated material. However, at higher temperatures, a reduction in strength and an increase in elongation were observed.

고온 프레스성형시 보론강 알루미늄 코팅층 거동특성 (Characterization of Aluminum Coated Layer in Hot Press Forming of Boron Steel)

  • 장정환;주병돈;이재호;문영훈
    • 열처리공학회지
    • /
    • 제21권4호
    • /
    • pp.183-188
    • /
    • 2008
  • Hot press forming allows geometrically complicated parts to be formed from sheet and the rapid cooling hardens them to extremely high strength. The main purpose of this research is to characterize Al coated layer in Al coated boron steel during hot press forming. For the hot press hardening experiment, test specimens were heated up to $810{\sim}930^{\circ}C$ and held for 3, 6 and 9 minutes, respectively. And then, some specimens were press hardened and others were air-cooled without any pressing for the comparison purpose. Al coated layer shows four distinct micro-structural regions of interest; diffusion zone, Al-Fe zone(I) low-Al zone(LAZ) and Al-Fe zone(II). Band-like LAZ is clearly shown at temperature ranges of $810{\sim}870^{\circ}C$ and sparsely dispersed at temperature higher than 900oC. The micro-cracking behavior in the Al coated layer during forming were also analyzed by bending and deep drawing tests. The strain concentration in softer LAZ is found to be closely related with micro-cracking and exfoliation in coated layer during forming.

압력선체 경판의 열간 성형 및 열처리에 관한 연구 (Hot Forming and Heat Treatment of the End-Bulkhead of a Pressure Hull)

  • 권일근;윤영철;윤중근
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.21-24
    • /
    • 2003
  • In hot forming process of the backward end-bulkhead of a pressure hull, the blank diameter and the tool clearance are the critical factors which influence wrinkling defect, forming load and shape completeness of the product. Two F.E.A softwares with the elasto-plastic material model and rigid plastic model were utilized to predict the occurrence of wrinkling defect. Tool clearance was determined by considering the increase of blank thickness, die strength and the stretching effect. Heat treatment condition after the hot forming to recover the original properties of the material was estabilished by specimen-based heat treating experiment.

  • PDF

핫스탬핑 공정에서 Tailor Rolled Blank 의 성형 특성을 고려한 성형한계 예측 (Limits Considering the Deformation Characteristics of Tailor Rolled Blank during Hot Stamping)

  • 김재홍;고대훈;서판기;김병민
    • 소성∙가공
    • /
    • 제23권6호
    • /
    • pp.351-356
    • /
    • 2014
  • The current study aims to predict the forming limits considering the deformation characteristics of tailor rolled blank(TRB) during hot stamping. The formability of TRB is affected by the TRB line orientation because elongations change due to the intrinsic geometry within the sheet. To evaluate the forming limits, Nakazima tests were conducted at elevated temperatures with different TRB line orientations. Forming limit diagrams(FLD) of TRB can be predicted by an interpolating equation based on the Nakazima test. Predicted FLDs were used in FE-simulations of a rectangular drawing. The predicted limit drawing height was compared with experimental results. The simulation results show good agreement with the experimental ones with an error range of 3%.

열간단조용 금형형의 수명예측기법 개발 (The Development of Life Prediction Method for Hot Forming Dies)

  • 이진호;김병민
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 금형가공 심포지엄
    • /
    • pp.54-59
    • /
    • 1998
  • In this study, two kinds of life prediction method for hot forming die are developed . One is empirical method requiring some experiment that evaluate thermal softening of die material accoring to operating conditions. The other is analyticl method that calcuate wear quantity of die occuring during the forming process. Wear is a predominant factor as well as plastic deformation and heat checking . And, these methods are applied to prodict tool life real die producting part for automobile. Thus , the applicability and the accuracy of the presented methods are investigated. Using the verified life prediction method above , optimal blocker die design minimizing the finisher die is done.

  • PDF

보론강판의 열간 벤딩 공정에서 성형인자가 기계성질에 미치는 영향 (The Effect of Forming Parameter on Mechanical Properties in Hot Bending Process of Boron Steel Sheet)

  • 권기영;신보성;강충길
    • 소성∙가공
    • /
    • 제19권4호
    • /
    • pp.203-209
    • /
    • 2010
  • In the hot press forming process (HPF), a martensitic structure is obtained by controlling the cooling rate when cooling a boron sheet that is heated up to over $900^{\circ}C$. The HPF process has various advantages such as the improvement in formability and material properties and minimal spring back of the deformed materials. The factors related to the cooling rate depend on the heat transfer characteristics between heated materials and dies. Therefore, in this study, the cooling rate is controlled by adjusting the heat transfer coefficient of the material at the pressing process. And, the mechanical properties and microstructure of the deformed material is demonstrated during the HPF process where cold dies are used to form the heated steel plate. This is achieved by varying the major forming conditions that control the cooling rate regarded as the most important process parameter.