• Title/Summary/Keyword: hot crack

Search Result 242, Processing Time 0.024 seconds

A Measurement of Size of the Open Crack using Ultrasound Thermography (초음파 서모그라피를 이용한 개방 균열의 크기 측정)

  • Cho, Jai-Wan;Seo, Yong-Chil;Jung, Seung-Ho;Jung, Hyun-Kyu;Kim, Seung-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.3
    • /
    • pp.218-223
    • /
    • 2007
  • The dissipation of high-power ultrasonic energy at the faces of the defect causes an increase in temperature. It is resulted from localized selective heating in the vicinity of cracks because of the friction effect. In this paper the measurement of size and direction of crack using UET(Ultrasound Excitation Thermography) is described. The ultrasonic pulse energy is injected into the sample in one side. The hot spot, which is a small area around the crack tip and heated up highly, is observed. The hot spot, which is estimated as the starting point of the crack, is seen in the nearest position from the ultrasonic excitation point. Another ultrasonic pulse energy is injected into the sample in the opposite side. The hot spot, the ending point of the crack, is seen in the closest distance from the injection point also. From the calculation of the coordinates of both the first hot spot and the second hot spot observed, the size and slope of the crack is estimated. In the experiment of STS fatigue crack specimen(thickness 14mm), the size and the direction of the crack was measured.

Effects of Ca Implantation on the Sintering and Crack Healing Behavior of High Purity $Al_2$O$_3$ Using Micro-Lithographic Technique-III: Stability of Crack-Like Pore (Ion Implantation으로 Ca를 첨가된 단결정 $Al_2$O$_3$의 Crack-Like Pore의 Healing 거동-III: Stability of Crack-Like Pore)

  • 김배연
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.9
    • /
    • pp.887-892
    • /
    • 1999
  • The inner crack-like pore with controlled amount of Ca impurity in the high purity alumina single crystal sapphire had been created by micro-fabrication technique which includes ion implanation photo-lithography Ar ion milling and hot press technique. The crack-like pores in two-hour hot pressed specimen were extremely stable even after heat treating at 1,80$0^{\circ}C$ for 5 hours almost no healing was observed. But the crack-like pores in one-hour hot pressed specimen at 1,30$0^{\circ}C$ were healed by heat treatment and the amount of healing was increased with the heat treatment time and temperature and the amount of Ca addition. The edges of crack-like pore parallel to <1100> direction in (001) basal plane were stable but the edges normal to this direction in (00101) plane <1120> direction were unstable to facetting This means that the surface energy of alumina along the <1100> direction in (0001) basal plane in much lower than <1120> direction.

  • PDF

Evaluation of Adhesion Characteristics of Crack Sealants Used in Asphalt Concrete Pavement (아스팔트 콘크리트 포장용 균열실링재의 부착특성 평가)

  • Lee, Jae-Jun;Kim, Seung-Hoon;Baek, Jong-Eun;Lim, Jae-Kyu;Kim, Yong-Joo
    • International Journal of Highway Engineering
    • /
    • v.17 no.2
    • /
    • pp.55-62
    • /
    • 2015
  • Cracking is an inevitable fact of asphalt concrete pavements and plays a major role in pavement deterioration. Pavement cracking is one of the main factors determining the frequency and method of repair. Cracks can be treated with a number of preventative maintenance actions, including overlay surface treatments such as slurry sealing, crack sealing, or crack filling. Pavement cracks can show up as one or all of the following types: transverse, longitudinal, fatigue, block, reflective, edge, and slippage. Crack sealing is a frequently used pavement maintenance treatment because it significantly extends the pavement service life. However, crack sealant often fails prematurely due to a loss of adhesion. Because current test methods are mostly empirical and only provide a qualitative measure of the bond strength, they cannot accurately predict the adhesive failure of the sealant. This study introduces a laboratory test aimed at assessing the bonding of hot-poured crack sealant to the walls of pavement cracks. A pneumatic adhesion tensile testing instrument (PATTI) was adopted to measure the bonding strength of the hot-poured crack sealant as a function of the curing time and temperature. Based on a limited number of test results, the hot-poured crack sealants have very different bonding performances. Therefore, this test method can be proposed as part of a newly developed performance-based standard specification for hot-poured crack sealants for use in the future. PURPOSES : The purpose of this study was to evaluate both the adhesion and failure performance of a crack sealant as a function of its curing time and curing temperature. METHODS: A pneumatic adhesion tensile testing instrument (PATTI) was adopted to measure the adhesion performance of a crack sealant as a function of the curing time and curing temperature. RESULTS: With changes in the curing time, curing temperature, and sealant type, the bond strengths were found to be significantly different. Also, higher bond strengths were measured at lower temperatures. Different sealant types produced completely different bond strengths and failure behaviors. CONCLUSIONS: The bonding strength of an evaluated crack sealant was shown to differ depending on various factors. Two sealant types, which were composed of different raw materials, were shown to perform differently. The newly proposed test offers the possibility of evaluating and differentiating between different crack sealants. Based on alimited number of test results, this test method can be proposed as part of a newly developed performance-based standard specification for crack sealants or as part of a guideline for the selection of hot-poured crack sealant in the future.

Metallurgical Failure Analysis on a Suspension Clamp in 154kV Electric Power Transmission Tower

  • Lee, Jaehong;Jung, Nam-gun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.2
    • /
    • pp.237-240
    • /
    • 2021
  • Failure of a suspension clamp made of hot dip galvanized cast iron in 154kV transmission tower was investigated. Metallurgical analysis of a crack of the clamp was performed using a digital microscope, an optical microscope, and a scanning electron microscope. It was revealed that the crack surface was covered by continuous zinc layer. Distinctive casting skin was found underneath both the outer surface and crack surface. The result showed that pre-existing crack had been formed in the fabrication, and liquid metal embrittlement during hot dip galvanization may assist crack propagation.

Evaluation of Hot Tear Susceptibility of Al-Si-Mg-Cu Alloy System (Al-Si-Mg-Cu 합금계의 열간 균열 특성 평가방법에 관한 연구)

  • Son, Kwang-Suk;Park, Tae-Eun;Kim, Jin-Su;Kang, Sung-Min;Kim, Donggyu
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.5
    • /
    • pp.436-444
    • /
    • 2010
  • The hot tear susceptibility of Al alloys was investigated by using a constrained-rod mold designed to quantify 8 types of tear tendency. The severity of the crack was scored by 5 grades on a scale of 0 to 4, with 0 being "no crack formed" and 4 being "complete separation by crack". The Hot Tear Susceptibility index (HTS) which consists of crack type scores and position scores, was proposed to compare the hot tear tendency of Al alloys. A356.0 cast alloy and AA6061 wrought Al alloy showed an HTS value of 27.5 and 53 respectively. The effects of Si, Cu, and Mg content on hot tear tendency were also investigated with a constrained-rod mold. The variation of HTS values with alloying elements represents similar behavior in the variation of the solidification range in a pseudo binary phase diagram.

A Study on Assessment Method of Crack Resistance and Thermal Shock Resistance in Hardfacing for Hot Forging Die (열간단조 금형 육성용접부 내균열성 및 내열충격성 평가방법에 관한 연구)

  • Cho, Sang-Myung;Kim, Sung-Ho;Jung, Yun-Ho;Baek, Seung-Hui;Jang, Jong-Hun;Park, Chul-Gyu;Woo, Hee-Chul;Jung, Byong-Ho
    • Journal of Welding and Joining
    • /
    • v.28 no.3
    • /
    • pp.79-85
    • /
    • 2010
  • Hardfacing is one of the frequently applying method to increase surface hardness in hot forging die. Recently, hardfacing receives great attention due to it's repair availability and low cost. In hot forging die, crack resistance and thermal shock resistance have been considered as major properties, However there are few studies for the assessment of these properties. So, it is necessary to establish the assessment method for crack resistance and thermal shock resistance in hardfacing for hot forging die. In this study, flux cored arc welding was applied to make hardfacing welds. Three point bending test was carried out to assess hardfacing weld's crack resistance, and high temperature bending test using salt bath was developed for thermal shock resistance. Consequently, it was possible to assess crack resistance and thermal shock resistance of hardfacing welds for hot forging die quantitatively.

Crack Properties of Concrete depending on Changes in Surface-Covered Curing Materials in Hot Weather (서중환경에서 표면피복 양생재 변화에 따른 콘크리트의 균열특성)

  • Lee, Je-Hyun;Kim, Tae-Woo;Baek, Cheol;Lee, Sang-Un;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.175-176
    • /
    • 2017
  • Many problems in various aspects such as generation of plastic/dry contraction cracks and cold joints can be caused unless proper quality control measures are established in hot weather circumstances. Therefore, this study aimed to compare the crack patterns of concrete by applying a change in 3 surface curing methods such as a mono aluminum-deposited bubble sheet developed to reduce the temperature and cracks through reflection of heat in summer and a PE film and a surface exposure used generally to an actually constructed apartment slab. The study result confirmed that the best concrete crack reduction effect can be obtained with a mono aluminum-deposited bubble sheet.

  • PDF

Field Application to Evaluate the Effect of Various Surface Covered Curing Blankets on Temperature Profile and Crack Occurrence of the Concrete under Hot Weather Condition (서중환경에서 표면피복 양생재 종류변화가 콘크리트의 초기 온도이력 및 균열발생에 미치는 영향에 관한 현장적용성 평가)

  • Han, Min-Cheol;Lee, Sang-Woon
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.5
    • /
    • pp.27-34
    • /
    • 2018
  • Concrete placed under hot weather condition suffers from larger slump loss, rapid moisture evaporation due to high air temperature. Proper measures for material, transportation and curing should be taken to prevent the quality deterioration of the concrete under hot weather condition. In Korea, Although the period of hot weather concrete in Korea occupies only 2 months, there are a lot of quality problems including plastic, drying shrinkage and cold joint. Therefore, the objective of this paper is to investigate and compare the temperature history and crack occurrence of the concrete, which was placed in the actual apartment house construction field under hot weather condition, in response to the application of surface covered curing blankets including PE film, single layer clear bubble sheet, white colored bubble sheet and aluminum metalized bubble sheet. Test results indicated that the application of white colored bubble sheet and aluminum metalized bubble sheet showed most favorable results in terms of reduction in temperature rise and crack occurrence as well as easiness in handling. But, due to light reflection by aluminum metalized bubble sheet, it is believed that white colored bubble sheet is preferable.

A Study on the Fatigue Crack Growth Behavior in Ti-6Al-4V Alloy(I) (Ti-6Al-4V의 피로균열성장거동에 관한 연구(I))

  • 우흥식;한지원
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.4
    • /
    • pp.52-57
    • /
    • 2001
  • Fatigue crack growth behaviour of Ti-6A-4V alloy is investigated in air and salt solution environment at room temperature and $200^{\circ}C$. Fatigue crack growth rate is blown to be fast for the formation of corrosive product in hot salt environment. For the effect on corrosion fatigue crack growth behaviour of region II. fatigue crack growth rate in atmosphere had a little gap to both case, $200^{\circ}C$ and room temperature. However, it showed very fast tendency in salt corrosive atmosphere, and it was remarkably accelerated in $200^{\circ}C$ temperature salt environment. When $\Delta$K was approximately 30MPa(equation omitted), fatigue crack growth rate had a little difference between at room temperature and at $200^{\circ}C$ high temperature, however in case of salt corrosive environment the room temperature was 3.5 times Inter and $200^{\circ}C$ high temperature for 16 times than air environment respectively.

  • PDF

Determination of CTOD & CTOA Curve for Structural Steel Hot-Rolled Thin Plates (일반 구조용강 열간압연 박판에 대한 CTOD와 CTOA 곡선 결정)

  • 이계승;이억섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.729-732
    • /
    • 2003
  • The K-R design curve is an engineering method of linear-elastic fracture analysis under plane-stress loading conditions. By the way, linear-elastic fracture mechanics (LEFM) is valid only as long as nonlinear material deformation is confined to a small region surrounding the crack tip. Like general steels, it is virtually impossible to characterize the fracture behavior with LEFM, in many materials. Critical values of J contour integral or crack tip opening displacement (CTOD) give nearly size independent measures of fracture toughness, even for relatively large amounts of crack tip plasticity. Furthermore, the crack tip opening displacement is the only parameter that can be directly measured in the fracture test. On the other. the crack tip opening angle (CTOA) test is similar to CTOD experimentally. Moreover, the test is easier to measure the fracture toughness than other method. The shape of the CTOA curve depends on material fracture behavior and, on the opening configuration of the cracked structure. CTOA parameter describes crack tip conditions in elastic-plastic materials, and it can be used as a fracture criterion effectively. In this paper, CTOA test is performed for steel JS-SS400 hot-rolled thin plates under plane-stress loading conditions. Special experimental apparatuses are used to prevent specimens from buckling and to measure crack tip opening angle for thin compact tension (CT) specimens.

  • PDF