DOI QR코드

DOI QR Code

Evaluation of Hot Tear Susceptibility of Al-Si-Mg-Cu Alloy System

Al-Si-Mg-Cu 합금계의 열간 균열 특성 평가방법에 관한 연구

  • Son, Kwang-Suk (Dept. of Materials Science and Engineering, Dong-A University) ;
  • Park, Tae-Eun (Dept. of Materials Science and Engineering, Dong-A University) ;
  • Kim, Jin-Su (Dept. of Materials Science and Engineering, Dong-A University) ;
  • Kang, Sung-Min (Dept. of Materials Science and Engineering, Dong-A University) ;
  • Kim, Donggyu (Dept. of Materials Science and Engineering, Dong-A University)
  • 손광석 (동아대학교 신소재공학과) ;
  • 박태은 (동아대학교 신소재공학과) ;
  • 김진수 (동아대학교 신소재공학과) ;
  • 강성민 (동아대학교 신소재공학과) ;
  • 김동규 (동아대학교 신소재공학과)
  • Received : 2010.02.04
  • Published : 2010.05.22

Abstract

The hot tear susceptibility of Al alloys was investigated by using a constrained-rod mold designed to quantify 8 types of tear tendency. The severity of the crack was scored by 5 grades on a scale of 0 to 4, with 0 being "no crack formed" and 4 being "complete separation by crack". The Hot Tear Susceptibility index (HTS) which consists of crack type scores and position scores, was proposed to compare the hot tear tendency of Al alloys. A356.0 cast alloy and AA6061 wrought Al alloy showed an HTS value of 27.5 and 53 respectively. The effects of Si, Cu, and Mg content on hot tear tendency were also investigated with a constrained-rod mold. The variation of HTS values with alloying elements represents similar behavior in the variation of the solidification range in a pseudo binary phase diagram.

Keywords

Acknowledgement

Supported by : 지식경제부,한국산업기술평가관리원,교육과학기술부,한국산업기술진흥원

References

  1. S. Lin, C. Aliravci, and M. O. Pekguleryuz, Metall. Mater. Trans. A 38A, 1056 (2007)
  2. M. O. Pekguleryuz, X. Li, and C. A. Aliravci, Metall. Mater. Trans. A 40, 1436 (2009) https://doi.org/10.1007/s11661-009-9806-4
  3. Suyitno, W. H. Kool and L. Katgerman, Metall. Mater. Trans. A 36, 1537 (2005) https://doi.org/10.1007/s11661-005-0245-6
  4. K. S. Son, T. E. Park, J. S. Kim, S. M. Kang, T. H. Kim, and D. Kim, Kor. J. Met. Mater. 48, 248 (2010) https://doi.org/10.3365/KJMM.2010.48.03.248
  5. P. W. I. and J.V. L., J. Inst. Met. 74, 439 (1947)
  6. D. Warrington and D. G. McCartney, Cast Metals 3, 134 (1989)
  7. A. R. E. Singer and P. H. Jennings, J. Inst. Met. 73, 197 (1947)
  8. Suyitno, W. H. Kool and L. Katgerman, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 40A, 2388 (2009)
  9. D. Eskin, Suyitno and L. Katgerman, Aluminium Cast House Technology 2005, 85 (2005)
  10. L. Katgerman, JOM 34, 46 (1982) https://doi.org/10.1007/BF03339110
  11. N. N. Prokhorov, Russ. Casting Prod. 2, 172 (1962)
  12. M. Rappaz, J. Drezet, and M. Gremaud, Metall. Mater. Trans. A 30, 449 (1999) https://doi.org/10.1007/s11661-999-0334-z
  13. J. C. Borland, Br. Weld. J. 7, 508 (1960)
  14. V. N. Saveiko, Russ. Casting Prod. 11, 453 (1961).
  15. D. G. Eskin, Suyitno and L. Katgerman, Prog. Mater Sci. 49, 629 (2004) https://doi.org/10.1016/S0079-6425(03)00037-9
  16. I. Novikov and O. E. Grushko, Mater. Sci. Technol. 11, 926 (1995) https://doi.org/10.1179/mst.1995.11.9.926