• Title/Summary/Keyword: hot compaction

Search Result 38, Processing Time 0.042 seconds

Sintering Behavior and Microstructures of Tantalum and Tantalum-Tungsten Alloys Powders (탄탈륨 및 탄탈륨-텅스텐 합금 분말의 소결성 및 미세조직 연구)

  • Kim, Youngmoo;Yang, Sung Ho;Lee, Seong;Lee, Sung Ho;Noh, Joon-Woong
    • Journal of Powder Materials
    • /
    • v.27 no.5
    • /
    • pp.373-380
    • /
    • 2020
  • The purpose of this study is to investigate the densification behavior and the corresponding microstructural evolution of tantalum and tantalum-tungsten alloy powders for explosively formed liners. The inherent inhomogeneous microstructures of tantalum manufactured by an ingot metallurgy might degrade the capability of the warhead. Therefore, to overcome such drawbacks, powder metallurgy was incorporated into the near-net shape process in this study. Spark plasma-sintered tantalum and its alloys with finer particle sizes exhibited higher densities and lower grain sizes. However, they were contaminated from the graphite mold during sintering. Higher compaction pressures in die and isostatic compaction techniques also enhanced the sinterability of the tantalum powders; however, a full densification could not be achieved. On the other hand, the powders exhibited full densification after being subjected to hot isostatic pressing over two times. Consequently, it was found that the hot isostatic-pressed tantalum might exhibit a lower grain size and a higher density as compared to those obtained in previous studies.

A study of Mechanical Properties of Hot Mix Asphalt for Developing of Quiet Pavement (저소음 포장체 개발을 위한 아스팔트 혼합물의 역학적 특성 연구)

  • Lee, Kwan-Ho;Jeong, Tae-Hyun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.1
    • /
    • pp.49-55
    • /
    • 2009
  • Our domestic economy has been developed very rapidly after 1960's. Also, it is dramatically increasing traffic on road and surround environmental issues. Especially, rapid economic growth has been induced large construction of pavement, and bigger and higher traffic for transportation. These are making air pollution, traffic noise and vibration. The social requirement against the revealed road environment and traffic sound reduction is being demanded. Traffic noise of city zone is showed over the environmental specification more than 57%. In order to overcome these situations, the social attention is being increased. The quiet pavement is the same format of permeable pavement, but is not same for functional performance. In this research, it has been carried out to evaluate the fundamental-mechanical properties of hot mix asphalt for quiet pavement. Especially, couple of laboratory tests are conducted like marshall stability, resilient modulus, indirect tensile test, and compaction energy analysis with gyratory compaction curve. Also, two-layer pavement system has been adopted for developing of quiet pavement. The basic performance of hot mix asphalt of quiet pavement show a satisfaction of specification of hot mix asphalt.

Extrusion of CP Grade Titanium Powders Eliminating the need for Hot Pre-compaction via Hot Isostatic Pressing

  • Wilson, Robert;Stone, Nigel;Gibson, Mark
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1273-1274
    • /
    • 2006
  • Chemically pure, hydride/dehydride titanium powders were cold pre-compacted then extruded at $850^{\circ}C$ and $\sim450MPa$ under argon. The extrusions were 100% dense with a narrow band of surface porosity and equiaxed microstructure of similar magnitude to the starting material. The tensile properties of the bars were better than conventionally extruded CP titanium bar product. Outcomes from this study have assisted in the identification of a number of key characteristics important to the extrusion of titanium from pre-compacted CP titanium powders, allowing the elimination of canning and hot isostatic pressing (HIPping) of billets prior to extrusion as per conventional PM processes.

  • PDF

Pellet Fuel from Wood Biomass (목질바이오매스를 이용한 펠릿연료의 제조)

  • Han, Gyu-Seong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.521-524
    • /
    • 2006
  • Recently, densified pollet fuel from wood biomass is widely used at North America and Europe as a regenerable and clean carbon neutral bioenergy. High-pressure compaction of sawdust of several species of wood to form a densified fuel was studied. Calorific and elemental analysis were carried out to assess pellet fuels Hot-press process was adopted for compact ion of sawdust and compaction was performed under prescribed condition. Densified fuels were evaluated by its oven-dry density and fines after 5-minute shaking test. The target density and fines of densified fuels were over $1.2g/cm^3$ and below 0.5%, respectively. When the press-temperature is over $60^{\circ}C$ densified fuels with density over $1.2g/cm^3$ and with fines below 0.5% can be produced. And the pressure over $1000kgf/cm^2$ was effect ive for this production.

  • PDF

High-pressure Compaction of Sawdust of Hyunsasi-poplar (Populus alba ${\times}$ P. glandulosa) for Densified Fuel (고밀화에 의한 현사시 톱밥의 고형연료화)

  • 한규성;여진기
    • Journal of Korea Foresty Energy
    • /
    • v.22 no.2
    • /
    • pp.54-59
    • /
    • 2003
  • Recently, densified pellet fuel from wood biomass is widely used at North America and Europe as a regenerable and clean carbon neutral bioenergy. High-pressure compaction of sawdust of Hyunsasi-poplar (Populus alba ${\times}$ P. glandulosa) to form a densified fuel was studied. Calorific and elemental analysis were carried out to assess Hyunsasi-poplar clones as fuels. Hot-press process was adopted for compaction of sawdust and compaction was performed under temperature from 100 to 180$^{\circ}C$, at pressure of 250 to 1000 kgf/$\textrm{cm}^2$, and for 2.5 to 10 minutes. Densified fuels were evaluated by its oven-dry density and fines after 5-minute shaking test. The target density and fines of densified fuels were over 1.2 g/$\textrm{cm}^2$ and below 0.5%, respectively. When the press-temperature is over 160$^{\circ}C$, densified fuels with density eve. 1.2 g/$\textrm{cm}^2$ and with fines below 0.5% can be produced. And the pressure over 750 kgf/$\textrm{cm}^2$ was effective for this production. It was found that the optimum press condition for preparation of densified fuel was 180$^{\circ}C$ -1000 kgf/$\textrm{cm}^2$ minutes.

  • PDF

Development of P/M Aluminum Alloy with Fine Microstructure

  • Tokuoka, Terukazu;Kaji, Toshihiko;Nishioka, Takao
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.712-713
    • /
    • 2006
  • We successfully developed Al-Si-Transition Metal (TM) -Rare Earth (RE) Powder Metallurgy (P/M) alloy with fine microstructure, which has high strength at high temperature. This material was compacted rapidly solidified powder and directly consolidated by hot extruding or forging. Before consolidating, rapid heating was performed on powder compaction in order to keep the fine microstructure in powder state. We have also investigated the processing conditions of this new alloy by computing simulations and experiments.

  • PDF

An Experimental Study on the Effectiveness of Soil Compaction at Below-Freezing Temperatures (동결 온도에서 다짐효과에 관한 실험적 연구)

  • Hwang, BumSik;Chae, Deokho;Kim, Youngseok;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.1
    • /
    • pp.37-43
    • /
    • 2015
  • Korea has four distinct seasons, showing hot and humidity in summer and cold weather lasted in winter. Domestic research on earth work has been developed according to the seasonal characteristics, and most of research topics have focused on the effect of freezing-thawing on the performance of geo-materials. However, the previous research was performed on the ground compacted at room temperature and therefore, the effect of the sub-zero temperature at the time of construction was not fully investigated. The ground characteristics compacted at freezing temperature can be different from those at room temperature and show different characteristics of strength and deformation caused by freezing and thawing. Therefore, the compaction tests on sandy materials were conducted under various temperature at $-3^{\circ}C$ and $-8^{\circ}C$ with various fine contents of 0%, 5%, 10% and 15% in weight fraction. The effectiveness of soil compaction at below-freezing temperatures were compared with the compaction at room temperature at $18^{\circ}C$ in terms of the maximum dry unit weight and optimum water contents. Based on the test results, the maximum dry unit weight tends to decrease with the freezing temperature and the relative compaction at $-8^{\circ}C$ can not be satisfied with general specification standard.