• Title/Summary/Keyword: host-pathogen interactions

Search Result 68, Processing Time 0.024 seconds

Epidemiological Concepts and Strategies in Breeding Soybeans for Disease Resistance

  • Seung Man, Lim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.35 no.1
    • /
    • pp.97-107
    • /
    • 1990
  • The epidemiology of plant disease deals with the dynamic processes of host-pathogen interactions, which determine the prevalence and severity of the disease. Epidemic processes for most foliar diseases of plants follow a series of steps: arrival of pathogens on plant surfaces, initial infection, incubation period, latent period, sporulation, dissemination of secondary inoculum, and infectious period. These complex biological processes are influenced by the environment-Man also often interfers with these processes by altering the host and pathogen populations and the environment. Slowing or halting any of the epidemic processes can delay the development of the epidemic, so that serious losses in yield due to disease do not occur. It is generally recognized that the most effective and efficient method of minimizing disease damage is through the use of resistant cultivars, particularly when other methods such as fungicide applications are not economically feasible-Populations of plant pathogens are not genetically uniform nor are they necessarily stable. Cultivars bred for resistance to current populations of a pathogen may not be resistant in the future due to selection pressures placed on the pathogen populations. Understanding population development and genetic variability in the pathogen, and knowledge of the genetics of resistance in the plant should help in developing breeding strategies that wi1l provide effective and stable disease control through genetic resistance. In the United States, soybeans have ranked first in value of crops sold off the farm in recent years. Soybeans have been the leading U. S.

  • PDF

Changes in Caenorhabditis elegans Exposed to Vibrio parahaemolyticus

  • Durai, Sellegounder;Pandian, Shunmugiah Karutha;Balamurugan, Krishnaswamy
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.10
    • /
    • pp.1026-1035
    • /
    • 2011
  • Vibrio parahaemolyticus, which owes its origin to the marine environment, is considered as one of the most common causes of infectious diarrhea worldwide. The present study investigated the pathogenicity of V. parahaemolyticus against the model organism, Caenorhabditis elegans. Infection in the host was localized with GFP-tagged V. parahaemolyticus using confocal laser scanning microscopy. The times required for causing infection, bacterial load in intestine, chemotactic response, and alteration in pharyngeal pumping were analyzed in the host system. In addition, the regulation of innate immune-related genes, lys-7, clec- 60, and clec-87, was analyzed using real-time PCR. The role of immune-responsible pmk-1 was studied using mutant strains. The pathogenicity of environmental strain CM2 isolated from the Gulf of Mannar, India was compared with that of a reference strain obtained from ATCC. The pathogen infected animals appeared to ward off infection by up-regulating candidate antimicrobial genes for a few hours after the exposure, before succumbing to the pathogen. For the first time, the pathogenicity of V. parahaemolyticus at both the physiological and molecular levels has been studied in detail using the model organism C. elegans.

High-throughput Gene Expression Analysis to Investigate Host-pathogen Interaction in Avian Coccidiosis

  • Lillehoj Hyun, S.
    • Korean Journal of Poultry Science
    • /
    • v.34 no.1
    • /
    • pp.77-83
    • /
    • 2007
  • Poultry products including meat and eggs constitute a major protein source in the American diet and disease-causing pathogens represent major challenges to the poultry industry. More than 95% of pathogens enter the host through the mucosal surfaces of the respiratory, digestive and reproductive tracts and over the past few decades, the two main mechanisms used to control diseases have been the use of vaccines and antibiotics. However, in the poultry industry, there are mounting concerns over the ability of current vaccines to adequately protect against emerging hyper-virulent strains of pathogens and a lack of suitable, cost effective adjuvants. Thorough investigation of the immunogenetic responses involved in host-pathogen interactions will lead to the development of new and effective strategies for improving poultry health, food safety and the economic viability of the US poultry industry. In this paper, I describe the development of immunogenomic and proteomic tools to fundamentally determine and characterize the immunological mechanisms of the avian host to economically significant mucosal pathogens such as Eimeria. Recent completion of poultry genome sequencing and the development of several tissue-specific cDNA libraries in chickens are facilitating the rapid application of functional immunogenomics in the poultry disease research. Furthermore, research involving functional genomics, immunology and bioinformatics is providing novel insights into the processes of disease and immunity to microbial pathogens at mucosal surfaces. In this presentation, a new strategy of global gene expression using avian macrophage (AMM) to characterize the multiple pathways related to the variable immune responses of the host to Eimeria is described. This functional immunogenomics approach will increase current understanding of how mucosal immunity to infectious agents operates, and how it may be enhanced to enable the rational development of new and effective strategies against coccidiosis and other mucosal pathogens.

Remodeling of host glycoproteins during bacterial infection

  • Kim, Yeolhoe;Ko, Jeong Yeon;Yang, Won Ho
    • BMB Reports
    • /
    • v.54 no.11
    • /
    • pp.541-544
    • /
    • 2021
  • Protein glycosylation is a common post-translational modification found in all living organisms. This modification in bacterial pathogens plays a pivotal role in their infectious processes including pathogenicity, immune evasion, and host-pathogen interactions. Importantly, many key proteins of host immune systems are also glycosylated and bacterial pathogens can notably modulate glycosylation of these host proteins to facilitate pathogenesis through the induction of abnormal host protein activity and abundance. In recent years, interest in studying the regulation of host protein glycosylation caused by bacterial pathogens is increasing to fully understand bacterial pathogenesis. In this review, we focus on how bacterial pathogens regulate remodeling of host glycoproteins during infections to promote the pathogenesis.

Innate immune response to oral bacteria and the immune evasive characteristics of periodontal pathogens

  • Ji, Suk;Choi, Youngnim
    • Journal of Periodontal and Implant Science
    • /
    • v.43 no.1
    • /
    • pp.3-11
    • /
    • 2013
  • Periodontitis is a chronic inflammation of periodontal tissue caused by subgingival plaque-associated bacteria. Periodontitis has long been understood to be the result of an excessive host response to plaque bacteria. In addition, periodontal pathogens have been regarded as the causative agents that induce a hyperinflammatory response from the host. In this brief review, host-microbe interaction of nonperiodontopathic versus periodontopathic bacteria with innate immune components encountered in the gingival sulcus will be described. In particular, we will describe the susceptibility of these microbes to antimicrobial peptides (AMPs) and phagocytosis by neutrophils, the induction of tissue-destructive mediators from neutrophils, the induction of AMPs and interleukin (IL)-8 from gingival epithelial cells, and the pattern recognition receptors that mediate the regulation of AMPs and IL-8 in gingival epithelial cells. This review indicates that true periodontal pathogens are poor activators/suppressors of a host immune response, and they evade host defense mechanisms.

Host-Directed Therapeutics as a Novel Approach for Tuberculosis Treatment

  • Kim, Ye-Ram;Yang, Chul-Su
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.9
    • /
    • pp.1549-1558
    • /
    • 2017
  • Despite significant efforts to improve the treatment of tuberculosis (TB), it remains a prevalent infectious disease worldwide owing to the limitations of current TB therapeutic regimens. Recent work on novel TB treatment strategies has suggested that directly targeting host factors may be beneficial for TB treatment. Such strategies, termed host-directed therapeutics (HDTs), focus on host-pathogen interactions. HDTs may be more effective than the currently approved TB drugs, which are limited by the long durations of treatment needed and the emergence of drug-resistant strains. Targets of HDTs include host factors such as cytokines, immune checkpoints, immune cell functions, and essential enzyme activities. This review article discusses examples of potentially promising HDTs and introduces novel approaches for their development.

Molecular determinants of the host specificity by Xanthomonas spp.

  • Heu, Sunggi;Choi, Min-Seon;Park, Hyoung-Joon;Lee, Seung-Don;Ra, Dong-Soo
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2004.10a
    • /
    • pp.65-67
    • /
    • 2004
  • During initial interactions of bacteria with their host plants, most plants recognize the bacterial infections and repel the pathogen by plant defense mechanism. The most active plant defense mechanism is the hypersensitive response (HR) which is the localized induced cell death in the plant at the site of infection by a pathogen. A primary locus induced in gram-negative phytopathogenic bacteria during this initial interaction is the Hrp locus. The Hrp locus is composed of a cluster of genes that encodes the bacteral Type 111 machinery that is involved in the secretion and translocation of effector proteins to the plant cell. DNA sequence analysis of hrp gene in phytopathogenic bacteria has revealed a Hrp pathogenicity is]and (PAI) with a tripartite mosaic structure. For many gram-negative pathogenic bacteria, colonization of the host's tissue depends on the type III protein secretion system (TTSS) which secrets and translocates effector proteins into the host cell. Effectors can be divided into several groups including broad host range effectors, host specific effectors, disease specific effectors, and effectors inhibit host defenses. The role of effectors carrying LRR domain in plant resistance is very elusive since most known plant resistance gene carry LRR domain. Host specific effectors such as several avr gene products are involved in the determination of the host specificity. Almost all the phytopathogenic Xanthomonas spp. carry avrBs1, avrBs2, and avrBs3 homologs. Some strains of X. oryzae pv. oryzae carry more than 10 copies of avrBs3 homologs. However, the functions of all those avr genes in host specificity are not characterized well.;

  • PDF

The Role of Immune Response in Periodontal Disease (치주질환의 면역학)

  • Kim, Kack-Kyun
    • IMMUNE NETWORK
    • /
    • v.3 no.4
    • /
    • pp.261-267
    • /
    • 2003
  • The periodontal diseases are infections caused by bacteria in oral biofilm, a gelatinous mat commonly called dental plaque, which is a complex microbial community that forms and adhere to tooth surfaces. Host immune-pathogen interaction in periodontal disease appears to be a complex process, which is regulated not only by the acquired immunity to deal with ever-growing and -invading microorganisms in periodontal pockets, but also by genetic and/or environmental factors. However, our understanding of the pathogenesis in human periodontal diseases is limited by the lack of specific and sensitive tools or models to study the complex microbial challenges and their interactions with the host's immune system. Recent advances in cellular and molecular biology research have demonstrated the importance of the acquired immune system in fighting the virulent periodontal pathogens and in protecting the host from developing further devastating conditions in periodontal infections. The use of genetic knockout and immunodeficient mouse strains has shown that the acquired immune response, in particular, $CD4^+$ T-cells plays a pivotal role in controlling the ongoing infection, the immune/inflammatory responses, and the subsequent host's tissue destruction.

The Zinc Transport Systems and Their Regulation in Pathogenic Fungi

  • Jung, Won Hee
    • Mycobiology
    • /
    • v.43 no.3
    • /
    • pp.179-183
    • /
    • 2015
  • Zinc is an essential micronutrient required for many enzymes that play essential roles in a cell. It was estimated that approximately 3% of the total cellular proteins are required for zinc for their functions. Zinc has long been considered as one of the key players in host-pathogen interactions. The host sequesters intracellular zinc by utilizing multiple cellular zinc importers and exporters as a means of nutritional immunity. To overcome extreme zinc limitation within the host environment, pathogenic microbes have successfully evolved a number of mechanisms to secure sufficient concentrations of zinc for their survival and pathogenesis. In this review, we briefly discuss the zinc uptake systems and their regulation in the model fungus Saccharomyces cerevisiae and in major human pathogenic fungi such as Aspergillus fumigatus, Candida albicans, and Cryptococcus gattii.