• Title/Summary/Keyword: host response

Search Result 574, Processing Time 0.026 seconds

Construction of a Transcriptome-Driven Network at the Early Stage of Infection with Influenza A H1N1 in Human Lung Alveolar Epithelial Cells

  • Chung, Myungguen;Cho, Soo Young;Lee, Young Seek
    • Biomolecules & Therapeutics
    • /
    • v.26 no.3
    • /
    • pp.290-297
    • /
    • 2018
  • We aimed to understand the molecular changes in host cells that accompany infection by the seasonal influenza A H1N1 virus because the initial response rapidly changes owing to the fact that the virus has a robust initial propagation phase. Human epithelial alveolar A549 cells were infected and total RNA was extracted at 30 min, 1 h, 2 h, 4 h, 8 h, 24 h, and 48 h post infection (h.p.i.). The differentially expressed host genes were clustered into two distinct sets of genes as the infection progressed over time. The patterns of expression were significantly different at the early stages of infection. One of the responses showed roles similar to those associated with the enrichment gene sets to known 'gp120 pathway in HIV.' This gene set contains genes known to play roles in preventing the progress of apoptosis, which infected cells undergo as a response to viral infection. The other gene set showed enrichment of 'Drug Metabolism Enzymes (DMEs).' The identification of two distinct gene sets indicates that the virus regulates the cell's mechanisms to create a favorable environment for its stable replication and protection of gene metabolites within 8 h.

The Stress-Activated Signaling (SAS) Pathways of a Human Fungal Pathogen, Cryptococcus neoformans

  • Jung, Kwang-Woo;Bahn, Yong-Sun
    • Mycobiology
    • /
    • v.37 no.3
    • /
    • pp.161-170
    • /
    • 2009
  • Cryptococcus neoformans is a basidiomycete human fungal pathogen that causes meningoencephalitis in both immunocompromised and immunocompetent individuals. The ability to sense and respond to diverse extracellular signals is essential for the pathogen to infect and cause disease in the host. Four major stress-activated signaling (SAS) pathways have been characterized in C. neoformans, including the HOG (high osmolarity glycerol response), PKC/Mpk1 MAPK (mitogen-activated protein kinase), calcium-dependent calcineurin, and RAS signaling pathways. The HOG pathway in C. neoformans not only controls responses to diverse environmental stresses, including osmotic shock, UV irradiation, oxidative stress, heavy metal stress, antifungal drugs, toxic metabolites, and high temperature, but also regulates ergosterol biosynthesis. The PKC(protein kinase C)/Mpk1 pathway in C. neoformans is involved in a variety of stress responses, including osmotic, oxidative, and nitrosative stresses and breaches of cell wall integrity. The $Ca^{2+}$/calmodulin- and Ras-signaling pathways also play critical roles in adaptation to certain environmental stresses, such as high temperature and sexual differentiation. Perturbation of the SAS pathways not only impairs the ability of C. neoformans to resist a variety of environmental stresses during host infection, but also affects production of virulence factors, such as capsule and melanin. A drug(s) capable of targeting signaling components of the SAS pathway will be effective for treatment of cryptococcosis.

Differential Level of Host Gene Expression Associated with Nucleopolyhedrovirus Infection in Silkworm Races of Bombyx mori

  • Lekha, Govindaraj;Vijayagowri, Esvaran;Sirigineedi, Sasibhushan;Sivaprasad, Vankadara;Ponnuvel, Kangayam M.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.29 no.2
    • /
    • pp.145-152
    • /
    • 2014
  • The variation in the level of immune response related gene expression in silkworm, Bombyx mori following infection with Bombyx mori nucleopolyhedrovirus (BmNPV) was analyzed at different time intervals. The occlusion bodies of BmNPV orally inoculated to the two most divergent silkworm races viz., Sarupat (resistant to BmNPV infection) and CSR2 (susceptible to BmNPV infection) were subjected to oral BmNPV inoculation. The expression profile of gp 41 gene of BmNPV in the Sarupat and CSR2 races revealed that the virus could invade the midguts of both susceptible and resistant races. However, its multiplication was significantly less in the midgut of resistant race, while, in the susceptible race, the viral multiplication reached maximum level within 12 h. These findings indicate that potential host genes are involved in the inhibition of viral multiplication within larval midgut. The immune response genes arylphorin, cathepsin B, gloverin, lebocin, serpin, Hsp 19.9, Hsp 20.1, Hsp 20.4, Hsp 20.8, Hsp 21.4, Hsp 23.7, Hsp 40, Hsp 70, Hsp90 revealed differential level of expression on NPV infection. The gloverin, serpin, Hsp 23.7 and Hsp 40 genes are significantly up-regulated in the resistant race after NPV infection. The early up-regulation of these genes suggests that these genes could play an important role in baculovirus resistance in the silkworm, B. mori.

Leishmania Vaccines: the Current Situation with Its Promising Aspect for the Future

  • Rasit Dinc
    • Parasites, Hosts and Diseases
    • /
    • v.60 no.6
    • /
    • pp.379-391
    • /
    • 2022
  • Leishmaniasis is a serious parasitic disease caused by Leishmania spp. transmitted through sandfly bites. This disease is a major public health concern worldwide. It can occur in 3 different clinical forms: cutaneous, mucocutaneous, and visceral leishmaniasis (CL, MCL, and VL, respectively), caused by different Leishmania spp. Currently, licensed vaccines are unavailable for the treatment of human leishmaniasis. The treatment and prevention of this disease rely mainly on chemotherapeutics, which are highly toxic and have an increasing resistance problem. The development of a safe, effective, and affordable vaccine for all forms of vector-borne disease is urgently needed to block transmission of the parasite between the host and vector. Immunological mechanisms in the pathogenesis of leishmaniasis are complex. IL-12-driven Th1-type immune response plays a crucial role in host protection. The essential purpose of vaccination is to establish a protective immune response. To date, numerous vaccine studies have been conducted using live/attenuated/killed parasites, fractionated parasites, subunits, recombinant or DNA technology, delivery systems, and chimeric peptides. Most of these studies were limited to animals. In addition, standardization has not been achieved in these studies due to the differences in the virulence dynamics of the Leishmania spp. and the feasibility of the adjuvants. More studies are needed to develop a safe and effective vaccine, which is the most promising approach against Leishmania infection.

T Cell Immune Responses against SARS-CoV-2 in the With Corona Era

  • Ji-Eun Oh
    • Biomedical Science Letters
    • /
    • v.28 no.4
    • /
    • pp.211-222
    • /
    • 2022
  • After more than two years of efforts to end the corona pandemic, a gradual recovery is starting in countries with high vaccination rates. Easing public health policies for a full-fledged post-corona era, such as lifting the mandatory use of outdoor mask and quarantine measures in entry have been considered in Korea. However, the continuous emergence of new variants of SARS-CoV-2 and limitations in vaccine efficacy still remain challenging. Fortunately, T cells and memory T cells, which are key components of adaptive immunity appear to contribute substantially in COVID-19 control. SARS-CoV-2 specific CD4+/CD8+ T cells are induced by natural infection or vaccination, and rapid induction and activation of T cells is mainly associated with viral clearance and attenuated clinical severity. In addition, T cell responses induced by recognition of a wide range of epitopes were minimally affected and conserved against the highly infectious subsets of omicron variants. Polyfunctional SARS-CoV-2 specific T cell memory including stem cell-like memory T cells were also developed in COVID-19 convalescent patients, suggesting long lasting protective T cell immunity. Thus, a robust T-cell immune response appears to serve as a reliable and long-term component of host protection in the context of reduced efficacy of humoral immunity and persistent mutations and/or immune escape.

Shaping Heterogeneity of Naive CD8+ T Cell Pools

  • Sung-Woo Lee;Gil-Woo Lee;Hee-Ok Kim;Jae-Ho Cho
    • IMMUNE NETWORK
    • /
    • v.23 no.1
    • /
    • pp.2.1-2.19
    • /
    • 2023
  • Immune diversification helps protect the host against a myriad of pathogens. CD8+ T cells are essential adaptive immune cells that inhibit the spread of pathogens by inducing apoptosis in infected host cells, ultimately ensuring complete elimination of infectious pathogens and suppressing disease development. Accordingly, numerous studies have been conducted to elucidate the mechanisms underlying CD8+ T cell activation, proliferation, and differentiation into effector and memory cells, and to identify various intrinsic and extrinsic factors regulating these processes. The current knowledge accumulated through these studies has led to a huge breakthrough in understanding the existence of heterogeneity in CD8+ T cell populations during immune response and the principles underlying this heterogeneity. As the heterogeneity in effector/memory phases has been extensively reviewed elsewhere, in the current review, we focus on CD8+ T cells in a "naive" state, introducing recent studies dealing with the heterogeneity of naive CD8+ T cells and discussing the factors that contribute to such heterogeneity. We also discuss how this heterogeneity contributes to establishing the immense complexity of antigen-specific CD8+ T cell response.

Genome-Wide Analysis of Hypoxia-Responsive Genes in the Rice Blast Fungus

  • Choi, Jaehyuk;Chung, Hyunjung;Lee, Gir-Won;Koh, Sun-Ki;Chae, Suhn-Kee;Lee, Yong-Hwan
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.05a
    • /
    • pp.13-13
    • /
    • 2015
  • Rice blast fungus, Magnaporthe oryzae, is the most destructive pathogen of rice in the world. This fungus has a biotrophic phase early in infection and switches to a necrotrophic lifestyle after host cell death. During the biotrophic phase, the fungus competes with host for nutrients and oxygen. Continuous uptake of oxygen is essential for successful establishment of blast disease of this pathogen. Here, we report transcriptional responses of the fungus to oxygen limitation. Transcriptome analysis using RNA-Seq identified 1,047 up-regulated genes in response to hypoxia. Those genes were involved in mycelial development, sterol biosynthesis, and metal ion transport based on hierarchical GO terms and well-conserved among three different fungal species. In addition, null mutants of three hypoxia-responsive genes were generated and tested for their roles on fungal development and pathogenicity. The mutants for a sterol regulatory element-binding protein gene, MoSRE1, and C4 methyl sterol oxidase gene, ERG25, exhibited increased sensitivity to hypoxia-mimetic agent, increased conidiation, and delayed invasive growth within host cells, suggesting important roles in fungal development. However, such defects did not cause any significant decrease in disease severity. The other null mutant for alcohol dehydrogenase gene, MoADH1, showed no defect in the hypoxia-mimic condition and fungal development. Taken together, this comprehensive transcriptional profiling in response to a hypoxia condition with experimental validations would provide new insights on fungal development and pathogenicity in plant pathogenic fungi.

  • PDF

Thecooperative relationship between chemotherapy and the host immune response in immunosuppressed or immunostimulated mice infected with Fasciola hepatica (면역억압 또는 면역활성된 마우스에 간질(Fasciola hepatica)을 감염시킨 후 관찰되는 약물요법과 숙주의 면역기전과의 상호협력관계)

  • Shin, Sung-shik;Kim, Cheol-hee
    • Korean Journal of Veterinary Research
    • /
    • v.40 no.3
    • /
    • pp.575-585
    • /
    • 2000
  • This study was performed to observe the influence of host immune response on the chemotherapy of mice experimentally infected with Fasciola hepatica. Following immunosuppression with prednisolone or immunoenhancement with Freund's complete adjuvant(FCA), mice were experimentally infected with 3 Fasciola hepatica metacercariae and treated with closantel at 1 week post infection. In the group of mice infected with metacercariae alone, 2 mice of 10 were dead at 10 weeks post infection(20% mortality), and adult flukes were recovered from the liver and the peritoneal cavity of the remaining 8 mice(100% infectivity). In the group of mice treated with prednisolone and infected with metacercariae, 8 of 10 mice died before euthanasia with a mean time of death earlier than the control group (p<0.05). In the group of immunosuppressed mice infected with metacercariae and treated with closantel 20mg/kg, 4 of 10 mice died before sacrifice. In the group of mice infected and treated with closantel 20mg/kg, mortality and infectivity was 10% and 30%, respectively. Similar results were observed in mice infected and treated with closantel 5mg/kg which resulted in 10% and 50% mortality and infectivity, respectively. These results indicated that the efficacy of closantel treatment was decreased in immunosuppressed mice, while the pathogenicity was increased. In immunoenhanced mice infected with metacercariae, on the other hand, the efficacy of chemotherapy with both 5mg/kg or 20mg/kg closantel resulted in only 10% infectivity. The results shown in this study strongly suggest that a close interaction between chemotherapy against F hepatica with closantel and the host immune system exists. Considering that fascioliasis is a zoonosis, treatment regimen against the infection to immunosuppressed patients may require a concurrent prescription of an appro-priate immuno-enhancing adjuvant.

  • PDF

Transcriptional Changes of Plant Defense-Related Genes in Response to Clavibacter Infection in Pepper and Tomato

  • Hwang, In Sun;Oh, Eom-Ji;Oh, Chang-Sik
    • The Plant Pathology Journal
    • /
    • v.36 no.5
    • /
    • pp.450-458
    • /
    • 2020
  • Pepper and tomato plants infected with two Clavibacter species, C. capsici and C. michiganensis have shown different patterns of disease development depending on their virulence. Here, we investigated how pepper and tomato plants respond to infection by the high-virulent or low-virulent Clavibacter strains. For this, we chose two strains of each Clavibacter species to show different virulence level in the host plants. Although low-virulent strains showed less disease symptoms, they grew almost the same level as the high-virulent strains in both plants. To further examine the response of host plants to Clavibacter infection, we analyzed the expression patterns of plant defense-related genes in the leaves inoculated with different strains of C. capsici and C. michiganensis. Pepper plants infected with high-virulent C. capsici strain highly induced the expression of CaPR1, CaDEF, CaPR4b, CaPR10, and CaLOX1 at 5 days after inoculation (dai), but their expression was much less in low-virulent Clavibacter infection. Expression of CaSAR8.2 was induced at 2 dai, regardless of virulence level. Expression of GluA, Pin2, and PR2 in tomato plants infected with high-virulent C. michiganensis were much higher at 5 dai, compared with mock or low-virulent strain. Expression of PR1a, Osmotin-like, Chitinase, and Chitinase class 2 was increased, regardless of virulence level. Expression of LoxA gene was not affected by Clavibacter inoculation. These results suggested that Clavibacter infection promotes induction of certain defense-related genes in host plants and that differential expression of those genes by low-virulent Clavibacter infection might be affected by their endophytic lifestyle in plants.

Allogeneic clonal mesenchymal stem cell therapy for refractory graft-versus-host disease to standard treatment: a phase I study

  • Yi, Hyeon Gyu;Yahng, Seung-Ah;Kim, Inho;Lee, Je-Hwan;Min, Chang-Ki;Kim, Jun Hyung;Kim, Chul Soo;Song, Sun U.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.1
    • /
    • pp.63-67
    • /
    • 2016
  • Severe graft-versus-host disease (GVHD) is an often lethal complication of allogeneic hematopoietic stem cell transplantation (HSCT). The safety of clinical-grade mesenchymal stem cells (MSCs) has been validated, but mixed results have been obtained due to heterogeneity of the MSCs. In this phase I study, the safety of bone marrow-derived homogeneous clonal MSCs (cMSCs) isolated by a new subfractionation culturing method was evaluated. cMSCs were produced in a GMP facility and intravenously administered to patients who had refractory GVHD to standard treatment resulting after allogeneic HSCT for hematologic malignancies. After administration of a single dose ($1{\times}10^6cells/kg$), 11 patients were evaluated for cMSC treatment safety and efficacy. During the trial, nine patients had 85 total adverse events and the rate of serious adverse events was 27.3% (3/11 patients). The only one adverse drug reaction related to cMSC administration was grade 2 myalgia in one patient. Treatment response was observed in four patients: one with acute GVHD (partial response) and three with chronic GVHD. The other chronic patients maintained stable disease during the observation period. This study demonstrates single cMSC infusion to have an acceptable safety profile and promising efficacy, suggesting that we can proceed with the next stage of the clinical trial.