• Title/Summary/Keyword: host response

Search Result 571, Processing Time 0.027 seconds

Analysis of the morphological change and the expression of secretory leukocyte protease inhibitor (SLPI) in various cell lines after lipopolysaccharide stimulation

  • Choi, Baik-Dong;Choi, Jeong-Yoon;Jeong, Soon-Jeong;Park, Joo-Cheol;Kim, Heung-Joong;Bae, Chun-Sik;Lim, Do-Seon;Jeong, Moon-Jin
    • 한국전자현미경학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.127-129
    • /
    • 2005
  • Bacterial lipopolysaccharide(LPS) is can stimulate the most LPS-responsive cells in the mammalian host. The macrophage response to LPS can protect the host from infection but high levels, contribute to systemic inflammatory response syndrome and destruction of host itself, The previously study, secretory leukocyte pretense inhibitor (SLPI) was known LPS-induced product of macrophage and had the function that antagonizes their LPS-induced activation of pro-inflammation signaling factors. Purpose of this study was to identify the expression of SLPI involving the infection in various cell lines including odontoblast cell line. Therefore, we conducted in vitro researches, which treated the LPS to the MDPC-23, and compared to NIH3T3, RAW264.7. To investigate the expressionof SLPI in mRNA level, the methods was used RT-PCR and western blotting for protein expression of SLPI. Moreover, we performed the scanning electron microscopic (SEM) observation for the morphological change. This work was supported by Korea Science and Engineering Foundation.

  • PDF

Th17 responses and host defense against microorganisms: an overview

  • Van De Veerdonk, Frank L.;Gresnigt, Mark S.;Kullberg, Bart Jan;Van Der Meer, Jos W.M.;Joosten, Leo A.B.;Netea, Mihai G.
    • BMB Reports
    • /
    • v.42 no.12
    • /
    • pp.776-787
    • /
    • 2009
  • T helper (Th) 17 cells have recently been described as a third subset of T helper cells, and have provided new insights into the mechanisms that are important in the development of autoimmune diseases and the immune responses that are essential for effective antimicrobial host defense. Both protective and harmful effects of Th17 responses during infection have been described. In general, Th17 responses are critical for mucosal and epithelial host defense against extracellular bacteria and fungi. However, recent studies have reported that Th17 responses can also contribute to viral persistence and chronic inflammation associated with parasitic infection. It has become evident that the type of microorganisms and the setting in which they trigger the Th17 response determines the outcome of the delicate balancethat exists between Th17 induced protection and immunopathogenesis.

Toward Functional Genomics of Plant-Pathogen Interactions: Isolation and Analysis of Defense-related Genes of Rot Pepper Expressed During Resistance Against Pathogen

  • Park, Do-Il;Lee, Sang-Hyeob
    • The Plant Pathology Journal
    • /
    • v.18 no.2
    • /
    • pp.63-67
    • /
    • 2002
  • To understand plant-pathogen interactions, a complete set of hot pepper genes differentially expressed against pathogen attack was isolated. As an initial step, hundreds of differentially expressed cDNAS were isolated from hot pepper leaves showing non-host resistance against bacterial plant pathogens (Xanthomonas campestris pv. glycines and Pseudomonas syringae pv. syringae) using differential display reverse transcription polymerase chain reaction (DDDRT-PCR) technique. Reverse Northern and Northern blot analyses revealed that 50% of those genes were differentially expressed in pepper loaves during non-host resistance response. Among them, independent genes without redundancy were micro-arrayed for further analysis. Random EST sequence database were also generated from various CDNA libraries including pepper tissue specific libraries and leaves showing non-host hypersensitive response against X. campestris pv. glycines. As a primary stage, thousands of cDNA clones were sequenced and EST data were analyzed. These clones are being spotted on glass slide to study the expression profiling. Results of this study may further broaden knowledge on plant-pathogen interactions.

Mitophagy: a balance regulator of NLRP3 inflammasome activation

  • Kim, Min-Ji;Yoon, Joo-Heon;Ryu, Ji-Hwan
    • BMB Reports
    • /
    • v.49 no.10
    • /
    • pp.529-535
    • /
    • 2016
  • The NLRP3 inflammasome is activated by a variety of external or host-derived stimuli and its activation initiates an inflammatory response through caspase-1 activation, resulting in inflammatory cytokine IL-1β maturation and secretion. The NLRP3 inflammasome activation is a kind of innate immune response, most likely mediated by myeloid cells acting as a host defense mechanism. However, if this activation is not properly regulated, excessive inflammation induced by overactivated NLRP3 inflammasome can be detrimental to the host, causing tissue damage and organ dysfunction, eventually causing several diseases. Previous studies have suggested that mitochondrial damage may be a cause of NLRP3 inflammasome activation and autophagy, which is a conserved self-degradation process that negatively regulates NLRP3 inflammasome activation. Recently, mitochondria-selective autophagy, termed mitophagy, has emerged as a central player for maintaining mitochondrial homeostasis through the elimination of damaged mitochondria, leading to the prevention of hyperinflammation triggered by NLRP3 inflammasome activation. In this review, we will first focus on the molecular mechanisms of NLRP3 inflammasome activation and NLRP3 inflammasome-related diseases. We will then discuss autophagy, especially mitophagy, as a negative regulator of NLPP3 inflammasome activation by examining recent advances in research.

Additive Main Effects and Multiplicative Interaction Analysis of Host-Pathogen Relationship in Rice-Bacterial Blight Pathosystem

  • Nayak, D.;Bose, L.K.;Singh, S.;Nayak, P.
    • The Plant Pathology Journal
    • /
    • v.24 no.3
    • /
    • pp.337-351
    • /
    • 2008
  • Host-pathogen interaction in rice bacterial blight pathosystem was analyzed for a better understanding of their relationship and recognition of stable pathogenicity among the populations of Xanthomonas oryzae pv. oryzae. A total number of 52 bacterial strains isolated from diseased leaf samples collected from 12 rice growing states and one Union Territory of India, were inoculated on 16 rice varieties, each possessing known genes for resistance. Analysis of variance revealed that the host genotypes(G) accounted for largest(78.4%) proportion of the total sum of squares(SS), followed by 16.5% due to the pathogen isolates(I) and 5.1% due to the $I{\times}G$ interactions. Application of the Additive Main effects and Multiplicative Interaction(AMMI) model revealed that the first two interaction principal component axes(IPCA) accounted for 66.8% and 21.5% of the interaction SS, respectively. The biplot generated using the isolate and genotypic scores of the first two IPCAs revealed groups of host genotypes and pathogen isolates falling into four sectors. A group of five isolates with high virulence, high absolute IPCA-1 scores, moderate IPCA-2 scores, low AMMI stability index '$D_i$' values and minimal deviations from additive main effects displayed in AMMI biplot as well as response plot, were identified as possessing stable pathogenicity across 16 host genotypes. The largest group of 27 isolates with low virulence, small IPCA-1 as well as IPCA-2 scores, low $D_i$ values and minimal deviations from additive main effect predictions, possessed stable pathogenicity for low virulence. The AMMI analysis and biplot display facilitated in a better understanding of the host-pathogen interaction, adaptability of pathogen isolates to specific host genotypes, identification of isolates showing stable pathogenicity and most discriminating host genotypes, which could be useful in location specific breeding programs aiming at deployment of resistant host genotypes in bacterial blight disease control strategies.

Implementation of multiple access bidirectional serial communications protocol using DC power line (직류 전원선을 이용한 다중 접속 양방향 직렬통신 프로토콜 구현)

  • Han, Kyong-Ho;Kim, Won-Il;Hwang, Ha-Yoon
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.332-338
    • /
    • 2008
  • This paper handles, implementation of multiple access bidirectional serial communications protocol using two common DC power lines, whict are power supply and ground, connecting multiple devices. Communication between the host and the multiple clients are performed using unique packet data with device ID unique to each devices connected on the common power lines. Host initiates data communications by transmitting command packet to the designated client with the client's ID and the client responds by transmitting response packet to the host and in this way, multiple clients and host exchange the packet through the common power lines. The normal voltage of the power communication line maintains 24V corresponding to level 1 and the host drops the voltage to 12V on sending level 0 signal, also the clients normally keeps the line voltage to 24V use pull-down circuit to drop the voltage to 12V on sending level 1 signal. Power supply originates from the host, the host senses the voltage level of the power communication lines and when the clients activates pull down circuit to send level 0 signal and the voltage drops to 12V, the hosts switches power source from 24V to 12V. Also, when clients deactivate pull down circuit to send level 1 signal, the host senses the voltage increase and switches the power source from 12V to 24V. Experimental circuit is designed with one hosts and four clients and verified the power line voltage switching operation depending on the data signal levels on the power line. The proposed research result can be applied to two wire power communications system with one host and multiple low current consumption clients.

  • PDF

Effects of Squalene on the Immune Responses in Mice(II):Cellular and Non-specific Immune Response and Antitumor Activity of Squalene

  • Ahn, Young-Keun;Kim, Joung-Hoon
    • Archives of Pharmacal Research
    • /
    • v.15 no.1
    • /
    • pp.20-29
    • /
    • 1992
  • Effects of squalene on cellular and non-specific immune responses and antitumor activity in mice were investigated. Cellular and non-specific immunological assay parameters adopted in the present study were delayed-type hypersensitivity reaction and resette forming cells (RFC) for cellular immunity, activities of natural killer (NK) cells and phagocyte for non-specific immunity. Squalene resulted in marked increases of cellular and non-specific immune functions and enhancement of host resistance to tumor challenge in dose-dependent manner.

  • PDF

Recent Progress in Understanding Host Mucosal Response to Avian Coccidiosis and Development of Alternative Strategies to Mitigate the Use of Antibiotics in Poultry Production

  • Lillehoj, Hyun-Soon;Lee, Sung-Hyen;Jang, Seung-Ik;Kim, Duk-Kyung;Lee, Kyung-Woo
    • Korean Journal of Poultry Science
    • /
    • v.38 no.4
    • /
    • pp.275-284
    • /
    • 2011
  • As the world population grows and developing countries become more affluent, the global consumption of meat will increase by more than 50% within the next 10 years. Confronting the increased demand for poultry food products are emerging field diseases, increasing regulatory bans of antimicrobial growth promoters, high-density growth conditions, and waste management. Although biotechnology offers solutions to some of these challenges, basic studies are needed to better understand the complex interaction between the intestinal microbiome, host immunity and the environment. This presentation will focus on emerging strategies to enhance gut immunity and to decrease economic losses due to poultry diseases. This presentation will highlight recent developments in coccidiosis research and provide information on host immunity, immunomodulation, and the latest advances in dietary and nutritional approaches against coccidiosis. Such information will magnify our understanding of host-parasite biology, mucosal immunology, and design of future nutritional interventions and vaccination strategies for coccidiosis.

Host Cellular Response during Enterohaemorrhagic Escherichia coli Shiga Toxin Exposure

  • Kyung-Soo, Lee;Seo Young, Park;Moo-Seung, Lee
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.4
    • /
    • pp.441-456
    • /
    • 2022
  • Shiga toxins (Stxs) are major virulence factors from the enterohemorrhagic Escherichia coli (EHEC), a subset of Stx-producing Escherichia coli. Stxs are multi-functional, ribosome-inactivating proteins that underpin the development of hemolytic uremic syndrome (HUS) and central nervous system (CNS) damage. Currently, therapeutic options for the treatment of diseases caused by Stxs are limited and unsatisfactory. Furthermore, the pathophysiological mechanisms underpinning toxin-induced inflammation remain unclear. Numerous works have demonstrated that the various host ribotoxic stress-induced targets including p38 mitogen-activated protein kinase, its downstream substrate Mitogen-activated protein kinase-activated protein kinase 2, and apoptotic signaling via ER-stress sensors are activated in many different susceptible cell types following the regular retrograde transportation of the Stxs, eventually leading to disturbing intercellular communication. Therapeutic options targeting host cellular pathways induced by Stxs may represent a promising strategy for intervention in Stx-mediated acute renal dysfunction, retinal damage, and CNS damage. This review aims at fostering an in-depth understanding of EHEC Stxs-mediated pathogenesis through the toxin-host interactions.

Differential Cytokine and Immunoglobulin Expressions in the Small Intestine of Echinostoma hortense Infected BALB/c Mice

  • Jo, Yoon-Kyung;Lee, Dong-Sup;Kim, Sung-In;Lee, Ji-Sook;Oh, Ji-Eun;Sung, Ho-Joong
    • Biomedical Science Letters
    • /
    • v.18 no.3
    • /
    • pp.254-259
    • /
    • 2012
  • Infections involving Echinostoma hortense (E. hortense) are considered to more severe than infections caused by other heterophyids. Although parasite expulsion by host immune responses attenuates the symptoms of infection, the detailed mechanisms of the host immune response need to be determined, especially in local immune responses involving cytokine and immunoglobulin expressions. We infected BALB/c mice with E. hortense and examined recovery rates together with expressions of multiple cytokines and immunoglobulins in the villi and crypts of the small intestine using immunohistochemistry. We observed a close correlation between worm expulsion rates and cytokine/immunoglobulin expressions in E. hortense infected mice. This study contributes to an understanding of the relationship between the immune response and parasite expulsion in hosts.