• Title/Summary/Keyword: host gene

Search Result 856, Processing Time 0.031 seconds

Alternanthera mosaic virus - an alternative 'model' potexvirus of broad relevance

  • Hammond, John;Kim, Ik-Hyun;Lim, Hyoun-Sub
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.2
    • /
    • pp.145-180
    • /
    • 2017
  • Alternanthera mosaic virus (AltMV) is a member of the genus Potexvirus which has been known for less than twenty years, and has been detected in Australasia, Europe, North and South America, and Asia. The natural host range to date includes species in at least twenty-four taxonomically diverse plant families, with species in at least four other families known to be infected experimentally. AltMV has been shown to differ from Potato virus X (PVX), the type member of the genus Potexvirus, in a number of ways, including the subcellular localization of the Triple Gene Block 3 (TGB3) protein and apparent absence of interactions between TGB3 and TGB2. Differences between AltMV variants have allowed identification of viral determinants of pathogenicity, and identification of residues involved in interactions with host proteins. Infectious clones of AltMV differing significantly in symptom severity and efficiency of RNA silencing suppression have been produced, suitable either for high level protein expression (with efficient RNA silencing suppression) or for Virus-Induced Gene Silencing (VIGS; with weaker RNA silencing suppression), demonstrating a range of utility not available with most other plant viral vectors. The difference in silencing suppression efficiency was shown to be due to a single amino acid residue substitution in TGB1, and to differences in subcellular localization of TGB1 to the nucleus and nucleolus. The current state of knowledge of AltMV biology, including host range, strain differentiation, host interactions, and utility as a plant viral vector for both protein expression and VIGS are summarized.

miR-7b Promoter Contains Negative Gene Elements (네거티브 유전자 조절인자를 포함하는 마이크로RNA, miR-7b의 프로모터)

  • Choi, Ji-Woong;Lee, Heon-Jin
    • Journal of Life Science
    • /
    • v.21 no.12
    • /
    • pp.1784-1788
    • /
    • 2011
  • The typical miRNA and its nearby host gene are co-expressed by sharing the same promoter. We assumed that miR-7b and its host gene FICT might use an identical promoter for their brain specific gene expression. Sequence comparison of the genomic DNA of mouse miR-7b, human miR-7-3 and their host genes by using the bioinformatic tools revealed high sequence homology and several putative transcription factor-binding sites on the promoter region. In order to probe the hypothesis we used a luciferase vector system into which we cloned the 5' upstream conserved region of miR-7b and FICT. The putative promoter region showed decreased luciferase activity, suggesting that the 5' upstream of miR-7b and FICT contain a negative regulator for gene expression.

Molecular Biological Characterization of Recombinant Baculovirus with an Expanded Host Range (숙주범위가 넓어진 유전자 재조합 핵다각체병 바이러스의 분자생물학적 특성)

  • 김우진;우수동
    • Journal of Sericultural and Entomological Science
    • /
    • v.38 no.1
    • /
    • pp.42-47
    • /
    • 1996
  • To investigate the host range determining factors of nuclear polyhedrois virus (NPV), Autographa california NPV and Bombyx mori NPV were coinfected into the two different cell lines, BmN-4 and Sf-9. The recombinant baculoviruses, RecS-A6 and RecB-727 which have an expanded host range, were isolated from Sf-9 and BmN-4 cell lines, respectively. The molecular biological characteristics of the recombinant baculoviruses were investigated. The pathogenicity of RecB-727 was similar to that of wild type BmNPV, while the pathogenicity of RecS-A6 was relatively lower than that of wild type BmNPV. The restriction enzyme digestion patterns of parental viruses and recombinant viruses showed that the recombinant virus has an expanded host range by genetic recombination. Southern blot analysis revealed that the p10 gene of RecB-727 was derived from AcNPV genomic DNA, while RecS-A6 has p10 gene of BmNPV in a viral genome. To investigate the host range expansion mechanism of recombinant baculovirus, HindIII-SacI 0.6 kb DNA fragments of RecS-A6 and RecB-727 were cloned and sequenced. The results showed that of wild type BmNPV helicase gene, suggesting that the expanded host range of recombinant baculoviruses was due to the insertion of BmNPV helicase gene into AcNPV viral genome.

  • PDF

Differentiation of Phytoplasmas Infecting Zizyphus jujuba and Paulownia coreana Using PCR-RELP

  • Han, Mu-Seok;Noh, Eun-Woon;Yun, Jeong-Koo
    • The Plant Pathology Journal
    • /
    • v.17 no.4
    • /
    • pp.189-193
    • /
    • 2001
  • The relationships between the phytoplasmas infecting Zizyphus jujuba and Paulownia coreana were investigated by PCR-RELP. The 16S rRNA genes of the phytoplasmas were analyzed and compared with each other after PCR amplification. The amplified bands 1.4 kb in size were analyzed by both restriction digestion and sequencing after cloning into a plasmid vector. In some cases, two different kinds of inserts were observed in the isolates that originated from a single plant. However, many of them appeared to be the amplification products of chloroplastic 16S rRNA gene of host plants. The phytoplasma gene could be differentiated from the chloroplastic gene by restriction digestion of the plasmids carrying the amplification products. Only the recombinant plasmids carrying phytoplasma 16S rRNA gene produced a 1.4 kb band when digested with the enzyme BanII. Of the 52 recombinant plasmids analyzed, 42 appeared to contain inserts that originated from the chloroplastic 16S rRNA gene of the host plants. No variation was detected among 16S rRNA gene of nine phytoplasma isolates infecting Z. jujuba. However, the phytoplasmas infecting Z. jujuba were different from that infecting P. coreana.

  • PDF

Construction of a Transcriptome-Driven Network at the Early Stage of Infection with Influenza A H1N1 in Human Lung Alveolar Epithelial Cells

  • Chung, Myungguen;Cho, Soo Young;Lee, Young Seek
    • Biomolecules & Therapeutics
    • /
    • v.26 no.3
    • /
    • pp.290-297
    • /
    • 2018
  • We aimed to understand the molecular changes in host cells that accompany infection by the seasonal influenza A H1N1 virus because the initial response rapidly changes owing to the fact that the virus has a robust initial propagation phase. Human epithelial alveolar A549 cells were infected and total RNA was extracted at 30 min, 1 h, 2 h, 4 h, 8 h, 24 h, and 48 h post infection (h.p.i.). The differentially expressed host genes were clustered into two distinct sets of genes as the infection progressed over time. The patterns of expression were significantly different at the early stages of infection. One of the responses showed roles similar to those associated with the enrichment gene sets to known 'gp120 pathway in HIV.' This gene set contains genes known to play roles in preventing the progress of apoptosis, which infected cells undergo as a response to viral infection. The other gene set showed enrichment of 'Drug Metabolism Enzymes (DMEs).' The identification of two distinct gene sets indicates that the virus regulates the cell's mechanisms to create a favorable environment for its stable replication and protection of gene metabolites within 8 h.

Characterization of Recombinant Derivatives of pJY711 of Multicopy Streptomyces Plasmid (Multicopy Streptomyces 플라스미드 pJY711의 재조합 유도체의 특성)

  • 염도영;공인수;유주현
    • Korean Journal of Microbiology
    • /
    • v.28 no.1
    • /
    • pp.35-40
    • /
    • 1990
  • The restriction clevage map of multi-copy recombinant plasmid, pJY712(8.1kb), carrying the thiostrepton resistance gene(tsr) was determined. pJY712 had a broad host range in Streptomyces and contained single BglII site for cloning purpose. The plasmid showed the phenomenon of lethal zygosis ($Ltz^{+}$). Transformation frequency of pJY712 was $5.0\times 10^{4}$ transformants per ug plasmid DNA (TFU) in S. lividans. Plasmid pJY713 was constructed by inserting the tyrosinase gene(mel) into the BclI site of pJY712. Recombinant plasmid pJY714 carrying the mel gene was constructed by in vitro deletion of a segment (1.9kb BglII-BclI fragment) from pJY713.

  • PDF

Genetic Diversity of avrBs-like Genes in Three Different Xanthomonas Species Isolated in Korea

  • Oh, Chang-Sik;Lee, Seung-Don;Heu, Sung-Gi
    • The Plant Pathology Journal
    • /
    • v.27 no.1
    • /
    • pp.26-32
    • /
    • 2011
  • Plant-pathogenic bacteria including Xanthomonas spp. carry genetic diversity in composition of avirulence genes for interaction with their host plants. Previously, we reported genetic diversity of avirulence genes in X. axonopodis pv. glycines. In this study, we determined genetic diversity of five avirulence genes, avrBs1, avrBs2, avrBs3, avrBs4, and avrRxv, in three other Xanthomonas species isolated in Korea by genomic southern hybridization. Although Korean races of X. campestris pv. vesicatoria that were isolated from year 1995 to 2002 had the same avirulence gene patterns as those that already reported, there was race shift from race 3 to race 1 by acquisition of avrBs3 genes. X. campestris pv. campestris isolated from Chinese cabbage, but not from cabbage or radish, carried two avrBs3 genes, and one of them affected HR-eliciting ability of this bacterium in broccoli. X. oryzae pv. oryzae carried eight to thirteen avrBs3 gene homologs, and this bacterium showed dynamic changes of resistance patterns in rice probably by losing or obtaining avrBs3 genes. These results indicate that avrBs3 gene is more diverse in Xanthomonas spp. than other four avirulence genes and also host ranges of these bacteria can be easily changed by loss or acquisition of avrBs3 genes.

Receptor-mediated gene delivery to hepatocyte with galatosylated polyethylenimine

  • Kim, In-Sook;Oh, In-Joon;Kim, Sung-Ho
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.292.2-293
    • /
    • 2003
  • In the gene therapy. viral gene delivery systems are limited in use because of several drawbacks like host immune reactions. Hence, non-viral gene delivery systems such as cationic polymers or synthetic gene carriers are being widely investigated to overcome the problems in the use of viral vectors. We synthesized a new conjugate of polyethyleniminet carrying galactose moieties as a targeting ligand for asialoglycoprotein (ASGP) receptors of hepatocytes. (omitted)

  • PDF

High-throughput Gene Expression Analysis to Investigate Host-pathogen Interaction in Avian Coccidiosis

  • Lillehoj Hyun, S.
    • Korean Journal of Poultry Science
    • /
    • v.34 no.1
    • /
    • pp.77-83
    • /
    • 2007
  • Poultry products including meat and eggs constitute a major protein source in the American diet and disease-causing pathogens represent major challenges to the poultry industry. More than 95% of pathogens enter the host through the mucosal surfaces of the respiratory, digestive and reproductive tracts and over the past few decades, the two main mechanisms used to control diseases have been the use of vaccines and antibiotics. However, in the poultry industry, there are mounting concerns over the ability of current vaccines to adequately protect against emerging hyper-virulent strains of pathogens and a lack of suitable, cost effective adjuvants. Thorough investigation of the immunogenetic responses involved in host-pathogen interactions will lead to the development of new and effective strategies for improving poultry health, food safety and the economic viability of the US poultry industry. In this paper, I describe the development of immunogenomic and proteomic tools to fundamentally determine and characterize the immunological mechanisms of the avian host to economically significant mucosal pathogens such as Eimeria. Recent completion of poultry genome sequencing and the development of several tissue-specific cDNA libraries in chickens are facilitating the rapid application of functional immunogenomics in the poultry disease research. Furthermore, research involving functional genomics, immunology and bioinformatics is providing novel insights into the processes of disease and immunity to microbial pathogens at mucosal surfaces. In this presentation, a new strategy of global gene expression using avian macrophage (AMM) to characterize the multiple pathways related to the variable immune responses of the host to Eimeria is described. This functional immunogenomics approach will increase current understanding of how mucosal immunity to infectious agents operates, and how it may be enhanced to enable the rational development of new and effective strategies against coccidiosis and other mucosal pathogens.