• 제목/요약/키워드: host gene

검색결과 856건 처리시간 0.025초

The MAP Kinase Kinase Gene AbSte7 Regulates Multiple Aspects of Alternaria brassicicola Pathogenesis

  • Lu, Kai;Zhang, Min;Yang, Ran;Zhang, Min;Guo, Qinjun;Baek, Kwang-Hyun;Xu, Houjuan
    • The Plant Pathology Journal
    • /
    • 제35권2호
    • /
    • pp.91-99
    • /
    • 2019
  • Mitogen-activated protein kinase (MAPK) cascades in fungi are ubiquitously conserved signaling pathways that regulate stress responses, vegetative growth, pathogenicity, and many other developmental processes. Previously, we reported that the AbSte7 gene, which encodes a mitogen-activated protein kinase kinase (MAPKK) in Alternaria brassicicola, plays a central role in pathogenicity against host cabbage plants. In this research, we further characterized the role of AbSte7 in the pathogenicity of this fungus using ${\Delta}AbSte7$ mutants. Disruption of the AbSte7 gene of A. brassicicola reduced accumulation of metabolites toxic to the host plant in liquid culture media. The ${\Delta}AbSte7$ mutants could not efficiently detoxify cruciferous phytoalexin brassinin, possibly due to reduced expression of the brassinin hydrolase gene involved in detoxifying brassinin. Disruption of the AbSte7 gene also severely impaired fungal detoxification of reactive oxygen species. AbSte7 gene disruption reduced the enzymatic activity of cell walldegrading enzymes, including cellulase, ${\beta}$-glucosidase, pectin methylesterase, polymethyl-galacturonase, and polygalacturonic acid transeliminase, during host plant infection. Altogether, the data strongly suggest the MAPKK gene AbSte7 plays a pivotal role in A. brassicicola during host infection by regulating multiple steps, and thus increasing pathogenicity and inhibiting host defenses.

The Mutation that Makes Escherichia coli Resistant to λ P Gene-mediated Host Lethality Is Located within the DNA Initiator Gene dnaA of the Bacterium

  • Datta, Indrani;Banik-Maiti, Sarbani;Adhikari, Lopa;Sau, Subrata;Das, Niranjan;Mandal, Nitai Chandra
    • BMB Reports
    • /
    • 제38권1호
    • /
    • pp.89-96
    • /
    • 2005
  • Earlier, we reported that the bacteriophage $\lambda$ P gene product is lethal to Escherichia coli, and the E. coli rpl mutants are resistant to this $\lambda$ P gene-mediated lethality. In this paper, we show that under the $\lambda$ P gene-mediated lethal condition, the host DNA synthesis is inhibited at the initiation step. The rpl8 mutation maps around the 83 min position in the E. coli chromosome and is 94% linked with the dnaA gene. The rpl8 mutant gene has been cloned in a plasmid. This plasmid clone can protect the wild-type E. coli from $\lambda$ P gene-mediated killing and complements E. coli dnaAts46 at $42^{\circ}C$. Also, starting with the wild-type dnaA gene in a plasmid, the rpl-like mutations have been isolated by in vitro mutagenesis. DNA sequencing data show that each of the rpl8, rpl12 and rpl14 mutations has changed a single base in the dnaA gene, which translates into the amino acid changes N313T, Y200N, and S246T respectively within the DnaA protein. These results have led us to conclude that the rpl mutations, which make E. coli resistant to $\lambda$ P gene-mediated host lethality, are located within the DNA initiator gene dnaA of the host.

Interaction of Heliothis armigera Nuclear Polyhedrosis Viral Capsid Protein with its Host Actin

  • Lu, Song-Ya;Qi, Yi-Peng;Ge, Guo-Qiong
    • BMB Reports
    • /
    • 제35권6호
    • /
    • pp.562-567
    • /
    • 2002
  • In order to find the cellular interaction factors of the Heliothis armigera nuclear polyhedrosis virus capsid protein VP39, a Heliothis armigera cell cDNA library was constructed. Then VP39 was used as bait. The host actin gene was isolated from the cDNA library with the yeast two-hybrid system. This demonstrated that VP39 could interact with its host actin in yeast. In order to corroborate this interaction in vivo, the vp39 gene was fused with the green fluorescent protein gene in plasmid pEGFP39. The fusion protein was expressed in the Hz-AM1 cells under the control of the Autographa californica multiple nucleopolyhedrovirus immediate early gene promoter. The host actin was labeled specifically by the red fluorescence substance, tetramethy rhodamine isothicyanete-phalloidin. Observation under a fluorescence microscopy showed that VP39, which was indicated by green fluorescence, began to appear in the cells 6 h after being transfected with pEGFP39. Red actin cables were also formed in the cytoplasm at the same time. Actin was aggregated in the nucleus 9 h after the transfection. The green and red fluorescence always appeared in the same location of the cells, which demonstrated that VP39 could combine with the host actin. Such a combination would result in the actin skeleton rearrangement.

Transposable Element 삽입의 유전자 발현에 미치는 영향 (Effect of Transposable Element Insertion on Gene Expression)

  • 김화영
    • 한국식물학회:학술대회논문집
    • /
    • 한국식물학회 1987년도 식물생명공학 심포지움 논문집 Proceedings of Symposia on Plant Biotechnology
    • /
    • pp.349-356
    • /
    • 1987
  • Insertions of transposable elements in or near a structural gene give rise to null phenotypes, reduced levels of gene expression, or alteration on the tissue-specific pattern of gene expression. Null phenotypes often result from insertions in exons. Reduced levels of gene expression results from insertions in various regions such as promoter region, 5' non-translated region, exon and intron. The maize allele of Adh1-3F1124 is an example of alteration in the tissue-specific patetern of gene expression. Adh1-3F1124 contains a Mu element inserted 31 bp 5' to the transcriptional start site of the wild-type Adh1 activity in seeds and anaerobically-treated seedlings but normal levels in the pollen. Upon the insertion of a transposable element a certain number of host DNA sequences at the insertion site is duplcated. When transposable elements excise, all element sequences are deleted. However, the duplicated host sequences may be left intact or deleted to various extents. This results in null phenotypes, restoration of original levels of gene expression, or altered levels of gene expression. On the basis of effects of transposable-element insertions or excisions on gene expression, the usefulness of transposable ellements for studies on gene expression is discussed.

  • PDF

Molecular determinants of the host specificity by Xanthomonas spp.

  • Heu, Sunggi;Choi, Min-Seon;Park, Hyoung-Joon;Lee, Seung-Don;Ra, Dong-Soo
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2004년도 The 2004 KSPP Annual Meeting & International Symposium
    • /
    • pp.65-67
    • /
    • 2004
  • During initial interactions of bacteria with their host plants, most plants recognize the bacterial infections and repel the pathogen by plant defense mechanism. The most active plant defense mechanism is the hypersensitive response (HR) which is the localized induced cell death in the plant at the site of infection by a pathogen. A primary locus induced in gram-negative phytopathogenic bacteria during this initial interaction is the Hrp locus. The Hrp locus is composed of a cluster of genes that encodes the bacteral Type 111 machinery that is involved in the secretion and translocation of effector proteins to the plant cell. DNA sequence analysis of hrp gene in phytopathogenic bacteria has revealed a Hrp pathogenicity is]and (PAI) with a tripartite mosaic structure. For many gram-negative pathogenic bacteria, colonization of the host's tissue depends on the type III protein secretion system (TTSS) which secrets and translocates effector proteins into the host cell. Effectors can be divided into several groups including broad host range effectors, host specific effectors, disease specific effectors, and effectors inhibit host defenses. The role of effectors carrying LRR domain in plant resistance is very elusive since most known plant resistance gene carry LRR domain. Host specific effectors such as several avr gene products are involved in the determination of the host specificity. Almost all the phytopathogenic Xanthomonas spp. carry avrBs1, avrBs2, and avrBs3 homologs. Some strains of X. oryzae pv. oryzae carry more than 10 copies of avrBs3 homologs. However, the functions of all those avr genes in host specificity are not characterized well.;

  • PDF

Retroviral integration profiles: their determinants and implications for gene therapy

  • Lim, Kwang-Il
    • BMB Reports
    • /
    • 제45권4호
    • /
    • pp.207-212
    • /
    • 2012
  • Retroviruses have often been used for gene therapy because of their capacity for the long-term expression of transgenes via stable integration into the host genome. However, retroviral integration can also result in the transformation of normal cells into cancer cells, as demonstrated by the incidence of leukemia in a recent retroviral gene therapy trial in Europe. This unfortunate outcome has led to the rapid initiation of studies examining various biological and pathological aspects of retroviral integration. This review summarizes recent findings from these studies, including the global integration patterns of various types of retroviruses, viral and cellular determinants of integration, implications of integration for gene therapy and retrovirus-mediated infectious diseases, and strategies to shift integration to safe host genomic loci. A more comprehensive and mechanistic understanding of retroviral integration processes will eventually make it possible to generate safer retroviral vector platforms in the near future.

Optimization of recombinant E. coli fermentation through biological manipulation and engineering control

  • Kim, Jeong-Yoon
    • 미생물과산업
    • /
    • 제19권4호
    • /
    • pp.14-26
    • /
    • 1993
  • Optimizing protein production in recombinant E. coli strains involves manipulation of genetic and environmental factors. In designing a production system, attention must be paid to gene expression efficiency, culture conditions and bioreactor configuration. Although not much emphasis was given to the physiology of host strains in this review, an understanding of the relationship between the physiology of host cell growth and the overproduction of a cloned gene protein is of primary importance to the improvement of the recombinant fermentation processes. Sometimes it is desirable to make use of gene fusion systems, e.g. protein A, polypeptide, gutathione-S-transferase, or pneumococcal murein hydrolase fusion, to facilitate protein purification.

  • PDF

Relationship Between Plant Viral Encoded Suppressor to Post-transcriptional Gene Silencing and Elicitor to R Gene-specific Host Resistance

  • Park, Chang-Won;Feng Qu;Tao Ren;T. Jack Morris
    • The Plant Pathology Journal
    • /
    • 제20권1호
    • /
    • pp.22-29
    • /
    • 2004
  • Many important horticultural and field crops are susceptible to virus infections or may possess a degree of resistance to some viruses, but become infected by others. Plant viruses enter cells through the presence of wounds, and replicate intracellularly small genomes that encode genes required for replication, cell-to-cell movement and encapsidation. There are numerous evidences from specific virus-host interactions to require the involvement of host factors and steps during viral replication cycle. However, viruses should deal with host defense responses either by general or specific mechanisms, targeting viral components or genome itself. On the other hand, the host plants have also adapted to defend themselves against viral attack by operating different lines of resistance responses. The defense-related interactions provide new insights into the complex molecular strategies for hosts for defense and counter-defense employed by viruses.

Detection of Mycoplasma Infection in Cultured Cells on the Basis of Molecular Profiling of Host Responses

  • Chung, Tae Su;Kim, Ju Han;Lee, Young-Ju;Park, Woong-Yang
    • Genomics & Informatics
    • /
    • 제3권3호
    • /
    • pp.63-67
    • /
    • 2005
  • Adaptive responses to diverse microbial pathogens might be limited in relatively few types. Host cell responses to pathogens are believed to be patterned or stereotyped along with species or class. We tried to compose the host response to Mycoplasma in terms of cellular gene expression. Although gene expression profile of two host HeLa and 293 cells were quite different each other, 30 genes were differentially expressed by mycoplasma infection in both of HeLa and 293 cells. Six of them (PR48, MADH4, MKPX, CRK, RBM7, NEK3) were related to cell cycle or proliferation. Another category of genes like IL1 HY1, KLRF1, TNFSF14, GBP1 were host defense to elicit immune responses. With this set of genes, we establish the prediction model for mycoplasma contamination.

Bcl-2 Knockdown Accelerates T Cell Receptor-Triggered Activation-Induced Cell Death in Jurkat T Cells

  • Lee, Yun-Jung;Won, Tae Joon;Hyung, Kyeong Eun;Lee, Mi Ji;Moon, Young-Hye;Lee, Ik Hee;Go, Byung Sung;Hwang, Kwang Woo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제18권1호
    • /
    • pp.73-78
    • /
    • 2014
  • Cell death and survival are tightly controlled through the highly coordinated activation/inhibition of diverse signal transduction pathways to insure normal development and physiology. Imbalance between cell death and survival often leads to autoimmune diseases and cancer. Death receptors sense extracellular signals to induce caspase-mediated apoptosis. Acting upstream of CED-3 family proteases, such as caspase-3, Bcl-2 prevents apoptosis. Using short hairpin RNAs (shRNAs), we suppressed Bcl-2 expression in Jurkat T cells, and this increased TCR-triggered AICD and enhanced TNFR gene expression. Also, knockdown of Bcl-2 in Jurkat T cells suppressed the gene expression of FLIP, TNF receptor-associated factors 3 (TRAF3) and TRAF4. Furthermore, suppressed Bcl-2 expression increased caspase-3 and diminished nuclear factor kappa B (NF-${\kappa}B$) translocation.