• Title/Summary/Keyword: host cells

Search Result 1,067, Processing Time 0.028 seconds

Bacteriophage Cocktail Comprising Fifi044 and Fifi318 for Biocontrol of Erwinia amylovora

  • Byeori Kim;Seung Yeup Lee;Jungkum Park;Sujin Song;Kwang-Pyo Kim;Eunjung Roh
    • The Plant Pathology Journal
    • /
    • v.40 no.2
    • /
    • pp.160-170
    • /
    • 2024
  • Erwinia amylovora is a plant pathogen that causes fire blight on apples and pears. Bacteriophages, which are viruses that selectively infect specific species of bacteria and are harmless to animal cells, have been considered as biological control agents for the prevention of bacterial pathogens. In this study, we aimed to use bacteriophages that infect E. amylovora as biocontrol agents against fire blight. We isolated bacteriophages Fifi044 and Fifi318 infecting E. amylovora, and characterized their morphology, plaque form, and genetic diversity to use as cocktails for disease control. The stabilities of the two phages were investigated at various temperatures and pH values and under sunlight, and long-term storage experiment was conducted for a year. To evaluate whether the two phages were suitable for use in cocktail form, growth curves of E. amylovora were prepared after treating the bacterial cells with single phages and a phage cocktail. In addition, a disease control test was conducted using immature apples and in vitro cultured apple plantlets to determine the biocontrol effects of the phage cocktail. The two phages were morphologically and genetically different, and highly stable up to 50℃ and pH value from 4 to 10. The phages showed synergistic effect when used as a cocktail in the inhibition of host bacterial growth and the disease control. This study demonstrated that the potential of the phage cocktail as a biocontrol agent for commercial use.

The Difference in Chemokine Expression in Airway Epithelial Cells According to the Virulence of Tubercle Bacilli (결핵균 독성 여부에 따른 기도 상피세포의 Chemokine 발현에 관한 연구)

  • Kwon, O-Jung;Kim, Ho-Joong;Kim, Jung-Hee;Kim, Ho-Cheol;Suh, Gee-Young;Park, Jeong-Woong;Park, Sang-Joon;Chung, Man-Pyo;Choi, Dong-Chull;Rhee, Chong-H.
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.4
    • /
    • pp.729-741
    • /
    • 1997
  • Background : We have recently reported that airway epithelial cells can produce RANTES and IL-8 in response to the stimulation of tubercle bacilli suggesting a certain role of airway epithelial cells in the pathogenesis of pulmonary tuberculosis. The pathogenesis of tuberculosis is determined by several factors including phagocytosis, immunological response of host, and virulence of tubercle bacilli. Interestingly, there have been reports suggesting that difference in immunological response of host according to the virulence of tubercle bacilli may be related with the pathogenesis of tuberculosis. We, therefore, studied the expressions and productions of RANTES and IL-8 in airway epithelial cells in response to tubercle bacilli(H37Rv, virulent strain and H37Ra, avirulent strain), in order to elucidate the possible pathophysiology of pulmonary tuberculosis. Methods : Peripheral blood monocytes were isolated from normal volunteers. Peripheral blood monocytes (PBM) were stimulated with LPS($10{\mu}g/ml$), H37Rv, or H37Ra($5{\times}10^5$ bacilli/well) along with normal control for 24 hours. A549 cells were stimulated with supernatants of cultured PBM for 24 hours. ELISA kit was used for the measurement of $TNF{\alpha}$ and IL-$1{\beta}$ production in supernatants of cultured PBM and for the measurement of RANTES and IL-8 in supernatants of cultured A549 cells. Northern blot analysis was used for the measurement of RANTES and IL-8 mRNA expression in cultured A549 cells. Results : $TNF{\alpha}$ and IL-$1{\beta}$ productions were increased in cultured PBM stimulated with LPS or tubercle bacilli(H37Rv or H37Ra) compared with the control. There was, however, no difference in $TNF{\alpha}$ and IL-$1{\beta}$ production between cultured PBM stimulated with H37Rv and H37Ra. RANTES and IL-8 expressions and productions were also increased in cultured A549 cells stimulated with LPS or tubercle bacilli compared with the control. RANTES and IL-8 mRNA expressions were significantly increased in cultured A549 cells stimulated with H37Ra-conditioned media(CM) compared with A549 cells stimulated with H37Rv-CM (p<0.05). However, there was no difference in RANTES and IL-8 productions between A549 cells stimulated with H37Rv-CM and H37Ra-CM. Conclusion : Airway epithelial cells can produce the potent chemokines such as RANTES and IL-8, in response to the stimulation of tubercle bacilli. These results suggest that airway epithelial cells may play a certain role in the pathogenesis of pulmonary tuberculosis. However, the role of airway epithelial cells in the pathogenesis of tuberculosis according to the virulence of tubercle bacilli was not clear in this study.

  • PDF

Interleukin-2 production and alteration of T cell subsets in mice infected with Naegleria fowleri (Naegleria fowleri 감염 마우스에 있어서 interleukin-2 생성 및 T 림프구 아형변동)

  • Yu, Cheol-Ju;Sin, Ju-Ok;Im, Gyeong-Il
    • Parasites, Hosts and Diseases
    • /
    • v.31 no.3
    • /
    • pp.249-258
    • /
    • 1993
  • Naegleria fowleri is the cause of primary amoebic meningoencephalitis in man, IL-2 levels after stimulation of T lymphocytes by PHA or N.fowleri lysates. the amounts of T lymphocyte subsets and the blastogenic responses of T lymphocytes in mice after Infected with pathogenic N. fowleri were studied comparing between two study groups, one $1{\;}{\times}{\;}10^4$ trophozoites inoculated mice and the other $1{\;}{\times}{\;}10^5$ trophozoites inoculated mice. All experimental samples were obtained on the day 7, 14 and 24 after inoculation. The mice inoculated with $1{\;}{\times}{\;}10^4$ trophozoites showed a 14.3% mortality rate, and 72.2% in the mice inoculated with $1{\;}{\times}{\;}10^5$ trophozoites. The IL-2 levels on day 14 of two experimental groups were significantly decreased as compared with the control group. Thy 1.2+T cells in the total spleen Iymphocytes of $1{\;}{\times}{\;}10^5$ trophozoites inoculated group on day 7 were significantly increased compared with the control group. There was no significant difference between $1{\;}{\times}{\;}10^4$ trophozoites inoculated group and the control group. $L3T4^{+}{\;}T$ cells and $Ly2^{+}$ T cells in the total spleen Iymphocytes of $1{\;}{\times}{\;}10^5$ trophozoites inoculated group on day 7 were sigrlificantly increased compared with the control group. The DNA S fraction of T cells in the spleen of $1{\;}{\times}{\;}10^5$ trophozoites inoculated group was significantly increased on day 7. The amount of S fractions of DNA were sequentially decreased on day 14 and 24 but they were also signiacantly increased compared with the control group. The results obtained in the experiments indicats that cell mediated immunity after N.fowleri infection acts on very important host's protection immunity around the 7th day after infection. IL-2 level was much suppressed on day 14 which resulted from the exhaustion of host immune response. It was observed that the level of IL-2 production ability and the amounts of T lymphocytes subsets and the blastogenic responses of T lymphocytes were not well correlated during the observation period.

  • PDF

Deterimination of an Optimal Time Point for Analyzing Transcriptional Activity and Analysis of Transcripts of Avian Influenza Virus H9N2 in Cultured Cell (배양세포에서 Semi-quantitative RT-PCR에 의한 조류인플루엔자 H9N2의 전사활성 분석 최적 시기 결정 및 전사체 분석)

  • Na, Gi-Youn;Lee, Young-Min;Byun, Sung-June;Jeon, Ik-Soo;Park, Jong-Hyeon;Cho, In-Soo;Joo, Yi-Seok;Lee, Yun-Jung;Kwon, Jun-Hun;Koo, Yong-Bum
    • Korean Journal of Microbiology
    • /
    • v.45 no.3
    • /
    • pp.286-290
    • /
    • 2009
  • The transcription of mRNA of avian influenza virus is regulated temporally during infection. Therefore, the measurement of transcript level in host cells should be performed before viral release from host cells because errors can occur in the analysis of the transcript levels if the viruses released from the infected cells re-infect cells. In this study, the timing of viral release was determined by measuring the level of viral RNA from viruses released from H9N2-infected chicken fibroblast cell line UMNSAH/DF-1 by semi-quantitative RT-PCR. The viral genomic RNA was isolated together with mouse total RNA which was added to the collected medium as carrier to monitor the viral RNA recovery and to use its GAPDH as an internal control for normalizing reverse transcription reaction as well as PCR reaction. It was found that viral release of H9N2 in the chicken fibroblast cell line UMNSAH/DF-1 took between 16 and 20 h after infection. We measured all 8 viral mRNA levels. Of the 8 transcripts, 7 species of viral mRNAs (each encoding HA, NA, PB1, PB2, NP, M, NS, respectively) except PA mRNA showed robust amplification, indicating these mRNA can be used as targets for amplification to measure transcript levels. These results altogether suggest that the method in this study can be used for screening antiviral materials against viral RNA polymerase as a therapeutic target.

Orientia tsutsugamushi Infection Induces $CD4^+$ T Cell Activation via Human Dendritic Cell Activity

  • Chu, Hyuk;Park, Sung-Moo;Cheon, In Su;Park, Mi-Yeoun;Shim, Byoung-Shik;Gil, Byoung-Cheol;Jeung, Woon Hee;Hwang, Kyu-Jam;Song, Ki-Duk;Hong, Kee-Jong;Song, Manki;Jeong, Hang-Jin;Han, Seung Hyun;Yun, Cheol-Heui
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.8
    • /
    • pp.1159-1166
    • /
    • 2013
  • Orientia tsutsugamushi, a gram-negative bacterium, causes severe acute febrile illness in humans. Despite this danger, the route of infection, infectivity, and protective mechanisms of the host's immune response to O. tsutsugamushi are unclear. Dendritic cells (DCs) are one of the most important cell types in bridging the innate and adaptive immune responses. In this study, we observed that O. tsutsugamushi infects and replicates in monocyte-derived DCs (MODCs). During infection and replication, the expressions of the cytokines IL-12 and TNF-${\alpha}$, as well as the co-stimulatory molecules CD80, CD83, CD86, and CD40, were increased in MODCs. When O. tsutsugamushi-treated MODCs were co-cultured with autologous $CD4^+$ T cells, they enhanced production of IFN-${\gamma}$, a major Th1 cytokine. Collectively, our results show that O. tsutsugamushi can replicate in MODCs and can simultaneously induce MODC maturation and increase proinflammatory cytokine levels in MODCs that subsequently activate $CD4^+$ T cells.

A Performance Analysis of the Virtual CellSystem for Mobile Hosts (이동 호스트를 위한 가상 셀 시스템의 성능 분석)

  • Lim, Kyung-Shik
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.10
    • /
    • pp.2627-2640
    • /
    • 1998
  • In this paper, we analyze the performance of the virtual cell system[1] for the transmission of IP datagrams in mobile computer communications. A virtual cell consistsof a group of physical cells shose base stationsl are implemented b recote bridges and interconnected via high speed datagram packet switched networks. Host mobility is supported at the data link layer using the distributed hierachical location information of mobile hosts. Given mobility and communication ptems among physical cells, the problem of deploying virtual cells is equivalent to the optimization cost for the entire system where interclster communication is more expesive than intracluster communication[2]. Once an iptimal partitionof disjoint clusters is obtained, we deploy the virtual cell system according to the topology of the optimal partition such that each virtual cell correspods to a cluser. To analyze the performance of the virtual cell system, we adopt a BCMP open multipel class queueing network model. In addition to mobility and communication patterns, among physical cells, the topology of the virtual cell system is used to determine service transition probabilities of the queueing network model. With various system parameters, we conduct interesting sensitivity analyses to determine network design tradeoffs. The first application of the proposed model is to determine an adequate network bandwidth for base station networking such that the networks would not become an bottleneck. We also evaluate the network vlilization and system response time due to various types of messages. For instance, when the mobile hosts begin moving fast, the migration rate will be increased. This results of the performance analysis provide a good evidence in demonsratc the sysem effciency under different assumptions of mobility and communication patterns.

  • PDF

Dermal mast cell responses in Paragonimus westermani-infected mice (폐흡충 감염에 대한 마우스 진피 내 비만세포의 반응)

  • 신명헌
    • Parasites, Hosts and Diseases
    • /
    • v.35 no.4
    • /
    • pp.259-264
    • /
    • 1997
  • This study was carried out to determine whether dermal mast cell responses to Parasoninn westemoni in an abnormal host, the mouse, were dependent on the site of metacercarial inoculation. In mice during subcutaneous infection, the number of der- mal mast cells were increased significantly (p<0.05) at the first week ($38.3/\textrm{mm}^2$) and then persisted at a high level until the sixth week ($45.2/\textrm{mm}^2$) of infection compared with PBS- injected (control) mice (range: $19.4-25.1/\textrm{mm}^2$). In mice during oral infection, the number of dermal mast cells were increased significantly (p<0.05) at two weeks ($33.5/\textrm{mm}^2$) after infection and remained at these levels thereafter compared loth non-infected (control) mice (range: $17.4-22.3/\textrm{mm}^2$). In mice both during subcutaneous and oral infection, the recruited dermal mast cells showed extensive degranulation at the second week (68.4%) and 60.7%, respectivelyl, reached a peak at the third week (81.4%, and 92.1%, respectively) and then declined slightly thereafter. By contrast, in both control mice, about 10% of dermal mast cells were degranulated. In conclusion, this study suggests that dermal mast cell responses to p. westemcni in mice are dependent on cutaneous sensitization by larval excretory-secretory antigens, irrespective of infection route.

  • PDF

Proteomic Analysis of Protein Changes in Human Lung Cancer Epithelial Cells Following Streptococcus pneumoniae Infection (Streptococcus pneumonia 감염으로 변화한 사람 폐 상피세포 단백질의 프로테오믹 분석)

  • Lee, Yun Yeong;Chung, Kyung Tae
    • Journal of Life Science
    • /
    • v.23 no.8
    • /
    • pp.1050-1056
    • /
    • 2013
  • Streptococcus pneumoniae is the leading cause of community-acquired pneumonia throughout the world. The bacteria invade through lung tissue and cause sepsis, shock, and serious sequelae, including rheumatic fever and acute glomerulonephritis. However, the molecular mechanism associated with pneumonia's penetration of lung tissue and invasion of the blood stream are still unclear. We attempted to investigate the host cell response at protein levels to S. pneumoniae D39 invasion using human lung cancer epithelial cells, A549. Streptococcus pneumoniae D39 began to change the morphology of A549 cells to become round with filopodia at 2 hours post-infection. A549 cell proteins obtained at each infection time point were separated by SDS-PAGE and analyzed using MALDI-TOF. We identified several endoplasmic reticulum (ER) resident proteins such as Grp94 and Grp78 and mitochondrial proteins such as ATP synthase and Hsp60 that increased after S. pneumoniae D39 infection. Cytosolic Hsc70 and Hsp90 were, however, identified to decrease. These proteins were also confirmed by Western blot analysis. The identified ER resident proteins were known to be induced during ER stress signaling. These/ data, therefore, suggest that S. pneumoniae D39 infection may induce ER stress.

The Role of the Insulin-like Growth Factor System during the Periimplantation Period (착상기 Insulin-like Growth Factor System의 역할)

  • 이철영
    • Journal of Embryo Transfer
    • /
    • v.12 no.3
    • /
    • pp.229-246
    • /
    • 1997
  • Implantation is a most important biological process during pregnancy whereby conceptus establishes its survival as well as maintenance of pregnancy. During the periimplantation period, both uterine endometriurn and conceptus synthesize and secrete a host of growth factors and cytokines which mediate the actions of estrogen and /or progesterone and also exert their steroid-independent actions. Growth factors expressed by the materno-conceptal unit en masse have important roles in cell migration, stimulation or inhibition of cell proliferation, cellular differentiation, maintenance of pregnancy and materno-conceptal communications in an autorcrine /paracrine manner. The present review focuses on the role of the intrauterine IGF system during periimplantation conceptus development. The IGF system comprises of IGF- I and IGF- II ligands, types I and II IGF receptors and six or more IGF-binding proteins(IGFBPs). IGFs and IGFBPs are expressed and secreted by uterine endometrium with tissue, pregnancy stage and species specificities under the influence of estrogen, progesterone and other growth factor(s). Conceptus also synthesizes components of the IGF system beginning from a period between 2-cell and blastocyst stages. Maternal IGFs are utilized by both maternal and conceptal tissues; conceptus-derived growth factors are believed to be taken up primarily by conceptus. IGFs enhance the development of both maternal and conceptal compartments in a wide range of biological processes. They stimulate proliferation and differentiation of endometrial cells and placental precursor cells including decidual transformation from stromal cells, placental formation and the synthesis of some steroid and protein hormones by differentiated endometrial cells or placenta. It is also well-documented in a number of experimental settings that both IGFs stimulate preimplantation embryo development. In slight contrast to these, prenatal mice carrying a null mutation of IGF and /or IGF receptor gene do not exhibit any apparent growth retardation until after implantation. Reason (s) for this discrepancy between the knock-out result and the in vitro ones, however, is not known. IGFBPs, in general, are believed to inhibit IGF action within the materno-conceptal unit, thereby allowing endometrial stromal cell differentiation as well as dampening ex cessive placental invasion into maternal tissue. There is evidence, however, indicating that IGFBP can enhance IGF action depending on environrnental conditions perhaps by directioning IGF ligand to the target cell. There is also a third possibility that certain IGFBPs and their proteolytic fragments may have their own biological activities independent of the IGF. In addition to IGFBPs, IGFBP proteases including those found within the uterine tissue or lumen are thought to enhance IGF bioavailability by degrading their substrates without affecting their bound ligand. In this regard, preliminary results in early pregnant pigs suggest that a partially characterized IGFBP protease activity in uterine luminal fluid enhances intrauterine IGF bioavailability during conceptus morphological development. In summary, a number of in vitro results indicate that IGFs stimulates the development of the rnaterno-conceptal unit during the periimplantation period. IGFBPs appear to inhibit IGF action by sequestering their ligands, whereas IGFBP proteases are thought to enhance intrauterine bioavailability of IGFs. Much is remaining to be clarified, however, regarding the roles of the individual IGF system components. These include in vivo evidence for the role of IGFs in early conceptus development, identification of IGF-regulated genes and their functions, specific roles for individual IGFBPs, identification and characterization of IGFBP proteases. The intrauterine IGF club house thus will be paying a lot of attention to forthcoming results in above and other areas, with its door wide-open!

  • PDF

Deciphering the role of a membrane-targeting domain in assisting endosomal and autophagic membrane localization of a RavZ protein catalytic domain

  • Park, Jui-Hee;Lee, Seung-Hwan;Park, Sang-Won;Jun, Yong-Woo;Kim, Kunhyung;Jeon, Pureum;Kim, Myungjin;Lee, Jin-A;Jang, Deok-Jin
    • BMB Reports
    • /
    • v.54 no.2
    • /
    • pp.118-123
    • /
    • 2021
  • The bacterial effector protein RavZ from a pathogen can impair autophagy in the host by delipidating the mammalian autophagy-related gene 8 (mATG8)-phosphatidylethanolamine (PE) on autophagic membranes. In RavZ, the membrane-targeting (MT) domain is an essential function. However, the molecular mechanism of this domain in regulating the intracellular localization of RavZ in cells is unclear. In this study, we found that the fusion of the green fluorescent protein (GFP) to the MT domain of RavZ (GFP-MT) resulted in localization primarily to the cytosol and nucleus, whereas the GFP-fused duplicated-MT domain (GFP-2xMT) localized to Rab5- or Rab7-positive endosomes. Similarly, GFP fusion to the catalytic domain (CA) of RavZ (GFP-CA) resulted in localization primarily to the cytosol and nucleus, even in autophagy-induced cells. However, by adding the MT domain to GFP-CA (GFP-CA-MT), the cooperation of MT and CA led to localization on the Rab5-positive endosomal membranes in a wortmannin-sensitive manner under nutrient-rich conditions, and to autophagic membranes in autophagy-induced cells. In autophagic membranes, GFP-CA-MT delipidated overexpressed or endogenous mATG8-PE. Furthermore, GFP-CA△α3-MT, an α3 helix deletion within the CA domain, failed to localize to the endosomal or autophagic membranes and could not delipidate overexpressed mATG8-PE. Thus, the CA or MT domain alone is insufficient for stable membrane localization in cells, but the cooperation of MT and CA leads to localization to the endosomal and autophagic membranes. In autophagic membranes, the CA domain can delipidate mATG8-PE without requiring substrate recognition mediated by LC3-interacting region (LIR) motifs.