• 제목/요약/키워드: host cells

검색결과 1,063건 처리시간 0.022초

Identification of an Entomopathogenic Bacterium, Serratia sp. ANU101, and Its Hemolytic Activity

  • Kim, Yong-Gyun;Kim, Keun-Seob;Seo, Ji-Ae;Shrestha, Sony;Kim, Hosanna-H.;Nalini, Madanagopal;Yi, Young-Keun
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권3호
    • /
    • pp.314-322
    • /
    • 2009
  • Four different bacterial colonies were isolated from an old stock of an entomopathogenic nematode, Steinernema monticolum. They all showed entomopathogenicity to final instar larvae of beet armyworm, Spodoptera exigua, by hemocoelic injection. However, they varied in colony form, susceptibility to antibiotics, and postmortem change of the infected host insects. Biolog microbial identification and 16S rDNA sequence analyses indicate that these are four different species classified into different bacterial genera. Owing to high entomopathogenicity and a cadaver color of infected insect host, Serratia sp. was selected as a main symbiotic bacterial species and analyzed for its pathogenicity. Although no virulence of Serratia sp. was detected at oral administration, the bacteria gave significant synergistic pathogenicity to fifth instar S. exigua when it was treated along with a spore-forming entomopathogenic bacterium, Bacillus thuringiensis. The synergistic effect was explained by an immunosuppressive effect of Serratia sp. by its high cytotoxic effect on hemocytes of S. exigua, because Serratia sp. caused septicemia of S. exigua when the bacterial cells were injected into S. exigua hemocoel. The cytotoxic factor(s) was present in the culture medium because the sterilized culture broth possessed high potency in the cytotoxicity, which was specific to granular cells and plasmatocytes, two main immune-associated hemocytes in insects.

Understanding Comprehensive Transcriptional Response of Salmonella enterica spp. in Contact with Cabbage and Napa Cabbage

  • Lee, Hojun;Kim, Seul I;Park, Sojung;Nam, Eunwoo;Yoon, Hyunjin
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권11호
    • /
    • pp.1896-1907
    • /
    • 2018
  • Salmonellosis is commonly associated with meat and poultry products, but an increasing number of Salmonella outbreaks have been attributed to contaminated vegetables and fruits. Enteric pathogens including Salmonella enterica spp. can colonize diverse produce and persist for a long time. Considering that fresh vegetables and fruits are usually consumed raw without heat treatments, Salmonella contamination may subsequently lead to serious human infections. In order to understand the underlying mechanism of Salmonella adaptation to produce, we investigated the transcriptomics of Salmonella in contact with green vegetables, namely cabbage and napa cabbage. Interestingly, Salmonella pathogenicity island (SPI)-1 genes, which are required for Salmonella invasion into host cells, were up-regulated upon contact with vegetables, suggesting that SPI-1 may be implicated in Salmonella colonization of plant tissues as well as animal tissues. Furthermore, Salmonella transcriptomic profiling revealed several genetic loci that showed significant changes in their expression in response to vegetables and were associated with bacterial adaptation to unfavorable niches, including STM14_0818 and STM14_0817 (speF/potE), STM14_0880 (nadA), STM14_1894 to STM14_1892 (fdnGHI), STM14_2006 (ogt), STM14_2269, and STM14_2513 to STM14_2523 (cbi operon). Here, we show that nadA was required for bacterial growth under nutrient-restricted conditions, while the other genes were required for bacterial invasion into host cells. The transcriptomes of Salmonella in contact with cabbage and napa cabbage provided insights into the comprehensive bacterial transcriptional response to produce and also suggested diverse virulence determinants relevant to Salmonella survival and adaptation.

Whole-Blood Gene-Expression Profiles of Cows Infected with Mycobacterium avium subsp. paratuberculosis Reveal Changes in Immune Response and Lipid Metabolism

  • Shin, Min-Kyoung;Park, Hong-Tae;Shin, Seung Won;Jung, Myunghwan;Im, Young Bin;Park, Hyun-Eui;Cho, Yong-Il;Yoo, Han Sang
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권2호
    • /
    • pp.255-267
    • /
    • 2015
  • Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of Johne's disease, a chronic debilitating disease affecting ruminants worldwide. In the present study, we aimed to determine the major gene networks and pathways underlying the immune response to MAP infection using whole-blood cells, as well as provide the potential transcriptional markers for identifying the status of MAP infection. We analyzed the transcriptional profiles of whole-blood cells of cattle identified and grouped according to the presence of MAP-specific antibodies and the MAP shed by them. The grouping was based on the results obtained by ELISA and PCR analyses as follows: i) Test1 group: MAP-negative results obtained by ELISA and positive results obtained by PCR; ii) Test2 group: MAP-positive results obtained by ELISA and negative results obtained by PCR; iii) Test3 group: MAP-positive results obtained by ELISA and positive results obtained by PCR; iv) uninfected control: MAP-negative results obtained both by ELISA and PCR analysis. The results showed down-regulated production and metabolism of reactive oxygen species in the Test1 group, activation of pathways related to the host-defense response against MAP (LXR/RXR activation and complement system) in the Test2 and Test3 groups, and anti-inflammatory response (activation of IL-10 signaling pathway) only in the Test3 group. Our data indicate a balanced response that serves the immune-limiting mechanism while the host-defense responses are progressing.

대식세포주에서 베타-글루칸에 의한 염증성 사이토카인의 발현 (Expression of Inflammatory Cytokines by Beta-glucan in Macrophage Cell Line)

  • 김미정;유한욱;조계형;김하원
    • 약학회지
    • /
    • 제52권1호
    • /
    • pp.73-78
    • /
    • 2008
  • Immune system can protect host attacking from a variety of microorganism and virus through innate and adaptive immunities. The innate immune system can be activated by recognition of conserved carbohydrates on the cell surface of pathogen resulting in protection, immunity regulation and inflammation. Immunostimulating and anti-tumor ${\beta}$-glucan, major cell wall component of many fungi, could be recognized as pathogen associated molecular pattern (PAMP) by C-type lectin such as pathogen recognition receptor (PRR) of host innate immunity cells. In spite of many studies of basidiomycetes ${\beta}$-glucan on immunostimulation, little is known about the precise mechanism as molecular-level. Among C-type lectins, dectin-1 was cloned and reported as a ${\beta}$-glucan receptor. In this report, we demonstrated induction of cytokine gene transcription by Ganoderma lucidum ${\beta}$-glucan in the absence or presence of lipopolysaccharide (LPS) by RT-PCR analysis. The expression of murine dectin-1 (MD-1) on RAW264.7 macrophage by RT-PCR showing both the full length, 757 bp $(MD-1{\alpha})$ and alternative spliced form, 620 bp $(MD-1{\beta})$. Both $MD-1{\alpha}$ and $MD-1{\beta}$ mRNAs were induced by ${\beta $-glucan both in the absence and presence of LPS. To explore expression of inflammatory cytokines by ${\beta}$-glucan, RAW264.7 cells were treated with ${\beta}$-glucan for 12 hours. As a result, the expressions of IL-1 IL-6, IL-l0 and $TNF-{\alpha}$ were increased by ${\beta}$-glucan treatment in a dose-dependent fashion. From these results, ${\beta}$-glucan induced transcriptions of dectin-1 and immune activating cytokine genes, indicating induction of immune allertness by expressing dectin-1 and secreting inflammatory cytokines.

p13 from group II baculoviruses is a killing-associated gene

  • Lu, Nan;Du, Enqi;Liu, Yangkun;Qiao, Hong;Yao, Lunguang;Pan, Zishu;Lu, Songya;Qi, Yipeng
    • BMB Reports
    • /
    • 제45권12호
    • /
    • pp.730-735
    • /
    • 2012
  • p13 gene was first described in Leucania separata multinuclear polyhedrosis virus (Ls-p13) several years ago, but the function of P13 protein has not been experimentally investigated to date. In this article, we indicated that the expression of p13 from Heliothis armigera single nucleocapsid nucleopolyhedrovirus (Ha-p13) was regulated by both early and late promoter. Luciferase assay demonstrated that the activity of Ha-p13 promoter with hr4 enhancer was more than 100 times in heterologous Sf9 cells than that in nature host Hz-AM1 cells. Both Ls-P13 and Ha-P13 are transmembrane proteins. Confocal microscopic analysis showed that both mainly located in the cytoplasm membrane at 48 h. Results of RNA interference indicated that Ha-p13 was a killing-associated gene for host insects H. armigera. The AcMNPV acquired the mentioned killing activity and markedly accelerate the killing rate when expressing Ls-p13. In conclusion, p13 is a killing associated gene in both homologous and heterologous nucleopolyhedrovirus.

헬리코박터 파이로리의 병원성 단백질, CagA에 대한 분자 독성학적 측면에서의 고찰 (Overview on Molecular Toxicological Aspects of Helicobacter pylori Virulence Factor, Cytotoxin-associated Antigen A (CagA))

  • 김병주;정화진;황지나;강석하;오세진;서영록
    • Toxicological Research
    • /
    • 제20권3호
    • /
    • pp.179-185
    • /
    • 2004
  • Helicobacter pylori (H. pylori) infects more than half of the people in the world as a major microbe to cause most of gastric diseases. Recently, cytotoxin associated-antigen A (CagA) is believed as one of the most important virulence factors of H. pylori. Molecular toxicological pathway of CagA is necessary to investigate for understanding the pathological and toxicological aspects of H. pylori, since this virulence protein harasses intercellular processes of host cells to get profit for the survival of H. pylori. CagA is coded from cag pathogenicity island (cag PAI) and translocated into host cells by Type 4 secretion system (TFSS). Tyrosine phosphorylation of CagA targets Src homology 2-containing phosphotyrosine phosphatase (SHP-2) to form a CagA-SHP-2 complex. This complex depends on the similarity of sequence between EPIYA motif and Src homology 2 domain (SH2 domain) of CagA. The generation of growth factors is an essential role of CagA in protecting and healing gastric mucosa for the survival of H. pylori. On the other hand, the activation of IL-8 by CagA induces neutrophils generating inflammation and free radicals. Indeed, free radicals are well known carcinogen to induce DNA damage. In addition, the transduction of mitogen-activation signal by CagA is one of the interesting features to understand how to cause cancer. The relationship between cancer and inflammation with CagA was mainly discussed in this review.

Antiviral Activity of Seaweed Extracts against Feline Calicivirus

  • Kim, Kyoung-Lan;Lee, Dae-Sung;Park, Mi-Sun;Eom, Sung-Hwan;Lim, Keun-Sik;Kim, Jong-Soon;Lee, Dong-Ho;Kang, Chang-Keun;Kim, Young-Mog;Lee, Myung-Suk
    • Fisheries and Aquatic Sciences
    • /
    • 제13권2호
    • /
    • pp.96-101
    • /
    • 2010
  • Norovirus, which causes gastroenteritis in humans, is an important food-borne pathogen worldwide. In an effort to discover an antiviral substance against norovirus, extracts from several seaweeds were evaluated for antiviral activity against feline calicivirus (FCV), which was used as a surrogate. The methanolic extract of Undaria pinnatifida exhibited the most significant antiviral activity and virucidal efficacy against FCV. The concentrations of the extract that reduced viral replication by 50% ($EC_{50}$) and resulted in the death of 50% of the host cells ($CC_{50}$) were 0.05 mg/mL and 1.02 mg/mL, respectively. The selectivity index, calculated from the ratio of the $CC_{50}$ and $EC_{50}$ was 20.4. No FCV infection of host cells occurred following a 1-h incubation in the presence of 12.50 mg/mL U. pinnatifida extract, indicating that the virus was completely inactivated by the extract treatment. The results obtained in this study will contribute to the development of a natural antiviral substance that will prevent food-borne disease caused by norovirus.

A PAS-Containing Histidine Kinase is Required for Conidiation, Appressorium Formation, and Disease Development in the Rice Blast Fungus, Magnaporthe oryzae

  • Shin, Jong-Hwan;Gumilang, Adiyantara;Kim, Moon-Jong;Han, Joon-Hee;Kim, Kyoung Su
    • Mycobiology
    • /
    • 제47권4호
    • /
    • pp.473-482
    • /
    • 2019
  • Rice blast disease, caused by the ascomycete fungus Magnaporthe oryzae, is one of the most important diseases in rice production. PAS (period circadian protein, aryl hydrocarbon receptor nuclear translocator protein, single-minded protein) domains are known to be involved in signal transduction pathways, but their functional roles have not been well studied in fungi. In this study, targeted gene deletion was carried out to investigate the functional roles of the PAS-containing gene MoPAS1 (MGG_02665) in M. oryzae. The deletion mutant ΔMopas1 exhibited easily wettable mycelia, reduced conidiation, and defects in appressorium formation and disease development compared to the wild type and complemented transformant. Exogenous cAMP restored appressorium formation in ΔMopas1, but the shape of the restored appressorium was irregular, indicating that MoPAS1 is involved in sensing the hydrophobic surface. To examine the expression and localization of MoPAS1 in M. oryzae during appressorium development and plant infection, we constructed a MoPAS1:GFP fusion construct. MoPAS1:GFP was observed in conidia and germ tubes at 0 and 2 h post-infection (hpi) on hydrophobic cover slips. By 8 hpi, most of the GFP signal was observed in the appressoria. During invasive growth in host cells, MoPAS1:GFP was found to be fully expressed in not only the appressoria but also invasive hyphae, suggesting that MoPAS may contribute to disease development in host cells. These results expand our knowledge of the roles of PAS-containing regulatory genes in the plant-pathogenic fungus M. oryzae.

돼지 유구낭미충증의 병리조직학적 관찰 (A histopathological study on porcine cysticercosis)

  • 신태균;김승호
    • 대한수의학회지
    • /
    • 제33권3호
    • /
    • pp.465-469
    • /
    • 1993
  • 낭미충(Cysticercus cellutosae)에 자연감염된 돼지의 각 장기를 조직학적으로 검사하였던 바 다음과 같은 결과를 얻었다. 피막을 형성하는 낭미충은 골격근, 파하직, 심장 및 뇌조직에서 관찰되었다. 조직학적 소견으로는 골격근의 근막내와 심장 심외막하에서 낭충주위는 피막의 형성과 함께 급성 염증반응이 인정되었고 부위에 따라서는 교원섬유 및 선유아세포의 증식에 의한 두터운 피막이 관찰되었고 인접한 골격근 또는 심근과 견고하게 부착된 예도 있었다. 피막주위에서는 호산구, 임파구, 대식세포의 침윤이 부위에 따라 경미하거나 또는 심한 형태로 다양하였다. 대뇌의 연막하에 형성된 피막주위에는 혈관과 결합조직의 증식이 현저하였고, 혈관주위 원형세포의 침윤과 임파결절 모양의 구조가 인정되었다. GFAP 면역반응은 혈관주위를 따라 GFAP 양성의 섬유가 잘 발달되었고 피막낭 외측을 따라 전체를 둘러싸는 경항이었다. 결론적으로 유구낭미충 감염돼지의 조직소견은 감염 장기에 따라 염증반응이 다양하고 낭충의 피막은 감염 초기에 형성된 것으로 추정되었다.

  • PDF

Heterologous Expression of Human $\beta$-Defensin-1 in Bacteriocin-Producing Laetoeoeeus lactis

  • CHOI HAK JONG;SEO MYUNG JI;LEE JUNG CHOUL;CHEIGH CHAN ICK;PARK HOON;AHN CHEOL;PYUN YU RYANG
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권2호
    • /
    • pp.330-336
    • /
    • 2005
  • Lactococcus lactis A164 is a nisin Z-producing strain isolated from kimchi. Its antimicrobial spectrum has been found to be active against most Gram-positive bacteria tested, yet inactive against Gram-negative bacteria [3]. Accordingly, to overcome this drawback, the current study attempted to express human $\beta$-defensin-l (hBD-l), which kills both Gram-positive and Gram-negative bacteria in L. lactis AI64. When the hBD-l cDNA was introduced using a nisin Z-controlled expression cassette, the L. lactis A164 transformants grew very poorly, due to the bactericidal effect of the expressed hBD-l against the transformants. Therefore, a gene fusion system was designed to reduce the toxicity of the expressed heterologous protein against the host cells. As such, the hBD-l gene was fused to the DsbC- Tag of pET -40b(+), then introduced to L. lactis A 164. The transformants expressed an intracellular 35.6-kDa DsbC-hBD-l fusion protein that exhibited slight activity against the host cells, yet not enough to strongly inhibit the cell growth. To obtain the recombinant hBD-l, the DsbC-hBD-l fusion protein was purified by nickel-affinity column chromatography, and the DsbC-Tag removed by cleaving with enterokinase. The cleaved mature hBD-l exhibited strong bactericidal activity against E. coli JM109, indicating that the recombinant L. lactis A 164 produced a biologically active hBD-I. In addition, the recombinant L. lactis A 164 was also found to produce the same level of nisin Z as the wild-type.