• Title/Summary/Keyword: host cells

Search Result 1,067, Processing Time 0.025 seconds

A Productive Replication of Hyphantria cunea Nucleopolyhedrovirus in Lymantria dispar Cell Line

  • Demir, Ismail;Demirbag, Zihni
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.10
    • /
    • pp.1485-1490
    • /
    • 2006
  • In this study, comparative replicational properties of Hyphantria cunea nucleopolyhedrovirus (HycuNPV) in Lymantria dispar (IPLB-LdElta) and Spodoptera frugiperda (IPLB-Sf21) cell lines were investigated. Our microscopic observations showed that cytopathic effects (CPEs) in LdElta cells appeared 12 h later than those in Sf21 cells. Whereas polyhedral inclusion bodies (PIBs) formed at 48 h postinfection (p.i.) in LdElta cells, it formed at 36 h p.i. in Sf21 cells. Extracellular virus production determined according to the 50% tissue culture infective dose ($TCID_{50}$) method in LdElta cells started about 12 h later when compared with Sf21 cells. Titers of extracellular virus in LdElta and Sf21 cells were calculated as $1.77{\times}10^9$ plaque forming units (PFU)/ml and $5.6{\times}10^9PFU/ml$, respectively, at 72 h p.i. We also showed that viral DNA replication began at 12 h p.i. in both cell lines. Viral protein synthesis was determined by SDS-polyacrylamide gel electrophoresis (PAGE) and polyhedrin synthesis was observed at 12 h p.i. in both cell lines. The results indicate that while the synthesis of macromolecules is 12 h later and production of extracellular virus is almost 3-fold lower in LdElta cells compared with those in Sf21 cells, the LdElta cell line is still a productive cell line for infection of HycuNPV.

Two New Species of Poecilostomatoid Copepods Associated with the Bivalve Dosinella penicillata in the Yellow Sea

  • Kim, Il-Hoi
    • Animal cells and systems
    • /
    • v.1 no.1
    • /
    • pp.15-23
    • /
    • 1997
  • Two new species of poecilostomatoid copepods, each belonging to the genera Myicola (Myicolidae) and Conchyliurus (Clausidiidae), are described, based on specimens taken from the mantle cavity of the bivalve Dosinella penicillata (Reeve). The host bivalve was collected from the intertidal mud flat near Inchon in the Yellow Sea.

  • PDF

Distribution of actin and tropomyosin in Cryptosporidium muris (쥐와포자충에서 acin과 tropomyosin의 분포)

  • Jae-Ran YU
    • Parasites, Hosts and Diseases
    • /
    • v.36 no.4
    • /
    • pp.227-234
    • /
    • 1998
  • Actin and tropomyosin of Cryptosporidium muris were localized by immunogold labeling. Two kinds of antibodies for actin labeling were used. The polyclonal antibody to skeletal muscle (chicken back muscle) actin was labeled on the pellicle and cytoplasmic vacuoles of parasites. The feeder organelle has showed a small amount of polyclonal actin antibody labeling as well. Whereas the monoclonal antibody to smooth muscle (chicken gizzard muscle) actin was chiefly labeled on the filamentous cytoplasm of parasites. The apical portion of host gastric epithelial cell cytoplasm was also labeled by smooth muscle actin together. The polyclonal antibody to tropomyosin was much more labeled at C. muris than host cells, so it could be easily identified even with low magnification (${\times}2,000$). The tropomyosin was observed along the pellicle, cytoplasmic vacuoles, and around the nucleus also. The skeletal muscle type actin seems to play a role in various celluar functions with tropomyosin in C. muris; on the other hand, the smooth muscle type actin was located mainly on the filamentous cytoplasm and supported the parasites firm attachment to host cells. Tropomyosin on the pellicle was thought to be able to stimulate the host as a major antigen through continuous shedding out by the escape of sporozoites or merozoites from their mother cells.

  • PDF

Helicobacter pylori Chaperone-Like Protein CagT Plays an Essential Role in the Translocation of CagA into Host Cells

  • Ding, Honglei;Zeng, Hao;Huang, Linping;Dong, Yandong;Duan, Yijun;Mao, Xuhu;Guo, Gang;Zou, Quanming
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.10
    • /
    • pp.1343-1349
    • /
    • 2012
  • Most of the Helicobacter pylori strains containing the cag pathogenicity island (PAI) have been associated with more severe gastric disease in infected humans. The cag PAI is composed of 27 proteins, and some of the components are required for CagA translocation into host cells as well as induction of proinflammatory cytokines, such as interleukin-8 (IL-8); however, the exact function of most of the components remains unknown or poorly characterized. In this study, we demonstrated that CagT (HP0532), which is an essential structural component of the cag PAI apparatus, plays an important role in the translocation of CagA into host epithelial cells. In addition to being located on the bacterial surface, CagT is also partially localized in the inner membrane, where it acts as a chaperone-like protein and promotes CagA translocation. However, CagT secretion was not detected by immunoprecipitation analysis of cell culture supernatants. Meanwhile, CagT was related to the introduction of IL-8 of the host cell. These results suggest that CagT is expressed on both the inner and outer bacterial membranes, where it serves as a unique type IV secretion system component that is involved in CagA secretion and cag PAI apparatus assembly.

A Scanning Electron Microscopic Study on the Glochidial Encystment of a Freshwater Clam, Anodonta arcaeformis on the Host Fish, Carassius auratus

  • Lee, Yong-Seok;Min, Byung-Jun;Kang, Se-Won;Jo, Yong-Hun;Kim, Tae-Yun;Kho, Weon-Gyu;Han, Yeon-Soo;Park, Hong-Seog;Jeong, Kye-Heon
    • The Korean Journal of Malacology
    • /
    • v.23 no.2
    • /
    • pp.181-187
    • /
    • 2007
  • A scanning electron microscopic study on the glochidium and glochidial encystment of Anodonta arcaeformis on the host fish Carassius auratus was conducted. The shape of the glochidium was apparently subtriangular and its average size was $270\;{\mu}m\;\times\;260\;{\mu}m\;\times\;145\;{\mu}m$. The glochidial shell valves were of the same size, kept together by a ligament that is 50.4 ${\mu}m$ in length and 5.5 ${\mu}m$ in width. Each of the glochidial shell valve had a long hook studded with many spines on the superior face. A large area of at the apex of the valve surrounding the base of the hook was provided with numerous small spines which became progressively smaller toward the periphery of the area. The glochidial shell valve consisted of two layers. The mantle cells line the glochidial shell valves and some of hair cells were observed. A larval thread was 2.3 ${\mu}m$ in diameter. In the artificial infection of the glochidia to one of the natural hosts, Carassius auratus, it took about three to four hours to encyst the glochidia with epithelial cells of the fish fins. The encystment method was the cell migration from the neighboring epithelial cells.

  • PDF

Delivery of Chicken Egg Ovalbumin to Dendritic Cells by Listeriolysin O-Secreting Vegetative Bacillus subtilis

  • Roeske, Katarzyna;Stachowiak, Radoslaw;Jagielski, Tomasz;Kaminski, Michal;Bielecki, Jacek
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.1
    • /
    • pp.122-135
    • /
    • 2018
  • Listeriolysin O (LLO), one of the most immunogenic proteins of Listeria monocytogenes and its main virulence factor, mediates bacterial escape from the phagosome of the infected cell. Thus, its expression in a nonpathogenic bacterial host may enable effective delivery of heterologous antigens to the host cell cytosol and lead to their processing predominantly through the cytosolic MHC class I presentation pathway. The aim of this project was to characterize the delivery of a model antigen, chicken egg ovalbumin (OVA), to the cytosol of dendritic cells by recombinant Bacillus subtilis vegetative cells expressing LLO. Our work indicated that LLO produced by non-sporulating vegetative bacteria was able to support OVA epitope presentation by MHC I molecules on the surface of antigen presenting cells and consequently influence OVA-specific cytotoxic T cell activation. Additionally, it was proven that the genetic context of the epitope sequence is of great importance, as only the native full-sequence OVA fused to the N-terminal fragment of LLO was sufficient for effective epitope delivery and activation of $CD8^+$ lymphocytes. These results demonstrate the necessity for further verification of the fusion antigen potency of enhancing the MHC I presentation, and they prove that LLO-producing B. subtilis may represent a novel and attractive candidate for a vaccine vector.

In Vitro Transcription Analyses of Autographa californica Nuclear Polyhedrosis Virus Genes

  • Huh, Nam-Eung
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.3
    • /
    • pp.183-190
    • /
    • 1994
  • Cell-free extracts prepared from cultured insect cells, Spodoptera. frugiperda, were analyzed for activation of early gene transcription of an insect baculovirus, Autographa californica nuclear polyhedrosis virus (AcNPV). The template DNA used for in vitro transcription assays contained promoter sites for the baculovirus genes that have been classified as immediate early ($\alpha$) or early genes. These genes are located in the HindIII-K/Q region of the AcNPV genome. Nuclei isolated from the AcNPV-infected Spodoptera frugiperda cells were also used for in vitro transcription analysis by RNase-mapping the labeled RNA synthesized from in vitro run-on reaction in the isolated nuclei. The genes studied by this technique were p26 and pl0 genes which were classified as delayed early and late gene, respectively. We found that transcription of the genes from the HindIII-K region was accurately initiated and unique in the whole cell extract obtained from uninfected cells, although abundance of the in vitro transcripts was reverse to that of in vivo RNA. With isolated nuclei transcription of the p26 gene was inhibited by $\alpha$-amanitin suggesting that the p26 gene was transcribed by host RNA polymerase II. However, transcription of the pl0 gene in isolated nuclei was not inhibited by $\alpha$-amanitin, but rather stimulated by the inhibitor. We also found that the synthesis of $\alpha$-amanitin-resistant RNA polymerase was begun before 6 hr p.i., the time point at which the onset of viral DNA replication as well as the appearance of a-amanitin-resistant viral transcripts were detected. These studies give us strong evidence to support the previous data that early genes of AcNPV were transcribed by host RNA polymerease III, while transcription of late genes was mediated at least by a novel $\alpha$-amanitin-resistant RNA polymerase.

  • PDF

Trichomonas vaginalis Metalloproteinase Induces mTOR Cleavage of SiHa Cells

  • Quan, Juan-Hua;Choi, In-Wook;Yang, Jung-Bo;Zhou, Wei;Cha, Guang-Ho;Zhou, Yu;Ryu, Jae-Sook;Lee, Young-Ha
    • Parasites, Hosts and Diseases
    • /
    • v.52 no.6
    • /
    • pp.595-603
    • /
    • 2014
  • Trichomonas vaginalis secretes a number of proteases which are suspected to be the cause of pathogenesis; however, little is understood how they manipulate host cells. The mammalian target of rapamycin (mTOR) regulates cell growth, cell proliferation, cell motility, cell survival, protein synthesis, and transcription. We detected various types of metalloproteinases including GP63 protein from T. vaginalis trophozoites, and T. vaginalis GP63 metalloproteinase was confirmed by sequencing and western blot. When SiHa cells were stimulated with live T. vaginalis, T. vaginalis excretory-secretory products (ESP) or T. vaginalis lysate, live T. vaginalis and T. vaginalis ESP induced the mTOR cleavage in both time-and parasite load-dependent manner, but T. vaginalis lysate did not. Pretreatment of T. vaginalis with a metalloproteinase inhibitor, 1,10-phenanthroline, completely disappeared the mTOR cleavage in SiHa cells. Collectively, T. vaginalis metallopeptidase induces host cell mTOR cleavage, which may be related to survival of the parasite.