References
- Van der Pol B. Trichomonas vaginalis infection: the most prevalent nonviral sexually transmitted infection receives the least public health attention. Clin Infect Dis 2007; 44: 23-25. https://doi.org/10.1086/509934
- Gomez-Barrio A, Nogal-Ruiz JJ, Montero-Pereira D, Rodriguez-Gallego E, Romero-Fernandez E, Escario JA. Biological variability in clinical isolates of Trichomonas vaginalis. Mem Inst Oswaldo Cruz 2002; 97: 893-896. https://doi.org/10.1590/S0074-02762002000600026
- Poole DN, McClelland RS. Global epidemiology of Trichomonas vaginalis. Sex Transm Infect 2013; 89: 418-422. https://doi.org/10.1136/sextrans-2013-051075
- Arroyo R, Alderete JF. Trichomonas vaginalis surface proteinase activity is necessary for parasite adherence to epithelial cells. Infect Immun1989; 57: 2991-2997.
- Hirt RP, Noel CJ, Sicheritz-Ponten T, Tachezy J, Fiori PL. Trichomonas vaginalis surface proteins: a view from the genome. Trends Parasitol 2007; 23: 540-547. https://doi.org/10.1016/j.pt.2007.08.020
- Ma L, Meng Q, Cheng W, Sung Y, Tang P, Hu S, Yu J. Involvement of the GP63 protease in infection of Trichomonas vaginalis. Parasitol Res 2011; 109: 71-79. https://doi.org/10.1007/s00436-010-2222-2
- Sommer U, Costello CE, Hayes GR, Beach DH, Gilbert RO, Lucas JJ, Singh BN. Identification of Trichomonas vaginalis cysteine proteases that induce apoptosis in human vaginal epithelial cells. J Biol Chem 2005; 280: 23853-23860. https://doi.org/10.1074/jbc.M501752200
- Kulkarni MM, Olson CL, Engman DM, McGwire BS. Trypanosoma cruzi GP63 proteins undergo stage-specific differential posttranslational modification and are important for host cell infection. Infect Immun 2009; 77: 2193-2200. https://doi.org/10.1128/IAI.01542-08
- Joshi PB, Kelly BL, Kamhawi S, Sacks DL, McMaster WR. Targeted gene deletion in Leishmania major identifies leishmanolysin (GP63) as a virulence factor. Mol Biochem Parasitol 2002; 120: 33-40. https://doi.org/10.1016/S0166-6851(01)00432-7
- Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev 2004; 18: 1926-1945. https://doi.org/10.1101/gad.1212704
- Dennis PB, Jaeschke A, Saitoh M, Fowler B, Kozma SC, Thomas G. Mammalian TOR: a homeostatic ATP sensor. Science 2001; 294: 1102-1105. https://doi.org/10.1126/science.1063518
- Edinger AL, Thompson CB. Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake. Mol Biol Cell 2002; 13: 2276-2288. https://doi.org/10.1091/mbc.01-12-0584
- Jaramillo M, Gomez MA, Larsson O, Shio MT, Topisirovic I, Contreras I, Luxenburg R, Rosenfeld A, Colina R, McMaster RW, Olivier M, Costa-Mattioli M, Sonenberg N. Leishmania repression of host translation through mTOR cleavage is required for parasite survival and infection. Cell Host Microbe 2011; 9: 331-341. https://doi.org/10.1016/j.chom.2011.03.008
- Cao W, Manicassamy S, Tang H, Kasturi SP, Pirani A, Murthy N, Pulendran B. Toll-like receptor-mediated induction of type I interferon in plasmacytoid dendritic cells requires the rapamycin-sensitive PI(3)K-mTOR-p70S6K pathway. Nat Immunol 2008; 9: 1157-1164. https://doi.org/10.1038/ni.1645
- Polivka J Jr, Janku F. Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol Ther 2014; 142: 164-175. https://doi.org/10.1016/j.pharmthera.2013.12.004
- Alvarez-Sanchez ME, Avila-Gonzalez L, Becerril-Garcia C, Fattel-Facenda LV, Ortega-Lopez J, Arroyo R. A novel cysteine proteinase (CP65) of Trichomonas vaginalis involved in cytotoxicity. Microb Pathog 2000; 28: 193-202. https://doi.org/10.1006/mpat.1999.0336
- Galbaugh T, Cerrito MG, Jose CC, Cutler ML. EGF-induced activation of Akt results in mTOR-dependent p70S6 kinase phosphorylation and inhibition of HC11 cell lactogenic differentiation. BMC Cell Biol 2006; 7: 34. https://doi.org/10.1186/1471-2121-7-34
- Vignot S, Faivre S, Aguirre D, Raymond E. mTOR-targeted therapy of cancer with rapamycin derivatives. Ann Oncol 2005; 16: 525-537. https://doi.org/10.1093/annonc/mdi113
- Matte C, Descoteaux A. Disruption of the AKT/mTOR pathway by Leishmania major promastigotes. BMC Proceedings 2011; 5 (suppl 1): 44.
- Isnard A, Shio MT, Olivier M. Impact of Leishmania metalloprotease GP63 on macrophage signaling. Front Cell Infect Microbiol 2012; 2: 72.
- Slomovitz BM, Coleman RL. The PI3K/AKT/mTOR pathway as a therapeutic target in endometrial cancer. Clin Cancer Res 2012; 18: 5856-5864. https://doi.org/10.1158/1078-0432.CCR-12-0662
-
Park KR, Nam D, Yun HM, Lee SG, Jang HJ, Sethi G, Cho SK, Ahn KS.
${\beta}$ -caryophyllene oxide inhibits growth and induces apoptosis through the suppression of PI3K/AKT/mTOR/S6K1 pathways and ROS-mediated MAPKs activation. Cancer Lett 2011; 312: 178-188. https://doi.org/10.1016/j.canlet.2011.08.001 - Pathania AS, Guru SK, Verma MK, Sharma C, Abdullah ST, Malik F, Chandra S, Katoch M, Bhushan S. Disruption of the PI3K/AKT/mTOR signaling cascade and induction of apoptosis in HL-60 cells by an essential oil from Monarda citriodora. Food Chem Toxicol 2013; 62: 246-254. https://doi.org/10.1016/j.fct.2013.08.037
Cited by
- Involvement of PI3K/AKT and MAPK Pathways for TNF-α Production in SiHa Cervical Mucosal Epithelial Cells Infected with Trichomonas vaginalis vol.53, pp.4, 2014, https://doi.org/10.3347/kjp.2015.53.4.371
- VPS32, a member of the ESCRT complex, modulates adherence to host cells in the parasite Trichomonas vaginalis by affecting biogenesis and cargo sorting of released extracellular vesicles vol.79, pp.1, 2022, https://doi.org/10.1007/s00018-021-04083-3