• Title/Summary/Keyword: horizontal safety net

검색결과 27건 처리시간 0.024초

낙하물 방지망 및 추락 방호망의 설치방법에 관한 고찰 (A Consideration of Installation Method of Debris Net and Horizontal Safety Net)

  • 지석원;최수경
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 춘계 학술논문 발표대회
    • /
    • pp.131-132
    • /
    • 2019
  • In the Public Notice No. 2019-15 of the Ministry of Employment and Labor, the safety net and regulations on them have been deleted. The performance criterion of the debris net, which also functions as a horizontal safety net in the regulations on the criteria of occupational safety and health, is unclear. When installing a debris net that also functions as a horizontal safety net, a net that meets the performance criteria of KS F 8082 must be installed in accordance with KOSHA C-31-2017. The Korean Standard Specification for Construction Works, which specifies debris net and horizontal safety net, should be revised as soon as possible.

  • PDF

Development of droplet entrainment and deposition models for horizontal flow

  • Schimpf, Joshua Kim;Kim, Kyung Doo;Heo, Jaeseok;Kim, Byoung Jae
    • Nuclear Engineering and Technology
    • /
    • 제50권3호
    • /
    • pp.379-388
    • /
    • 2018
  • Models for the rate of atomization and deposition of droplets for stratified and annular flow in horizontal pipes are presented. The entrained fraction is the result of a balance between the rate of atomization of the liquid layer that is in contact with air and the rate of deposition of droplets. The rate of deposition is strongly affected by gravity in horizontal pipes. The gravitational settling of droplets is influenced by droplet size: heavier droplets deposit more rapidly. Model calculation and simulation results are compared with experimental data from various diameter pipes. Validation for the suggested models was performed by comparing the Safety and Performance Analysis Code for Nuclear Power Plants calculation results with the droplet experimental data obtained in various diameter horizontal pipes.

Partition method of wall friction and interfacial drag force model for horizontal two-phase flows

  • Hibiki, Takashi;Jeong, Jae Jun
    • Nuclear Engineering and Technology
    • /
    • 제54권4호
    • /
    • pp.1495-1507
    • /
    • 2022
  • The improvement of thermal-hydraulic analysis techniques is essential to ensure the safety and reliability of nuclear power plants. The one-dimensional two-fluid model has been adopted in state-of-the-art thermal-hydraulic system codes. Current constitutive equations used in the system codes reach a mature level. Some exceptions are the partition method of wall friction in the momentum equation of the two-fluid model and the interfacial drag force model for a horizontal two-phase flow. This study is focused on deriving the partition method of wall friction in the momentum equation of the two-fluid model and modeling the interfacial drag force model for a horizontal bubbly flow. The one-dimensional momentum equation in the two-fluid model is derived from the local momentum equation. The derived one-dimensional momentum equation demonstrates that total wall friction should be apportioned to gas and liquid phases based on the phasic volume fraction, which is the same as that used in the SPACE code. The constitutive equations for the interfacial drag force are also identified. Based on the assessments, the Rassame-Hibiki correlation, Hibiki-Ishii correlation, Ishii-Zuber correlation, and Rassame-Hibiki correlation are recommended for computing the distribution parameter, interfacial area concentration, drag coefficient, and relative velocity covariance of a horizontal bubbly flow, respectively.

Numerical investigation of film boiling heat transfer on the horizontal surface in an oscillating system with low frequencies

  • An, Young Seock;Kim, Byoung Jae
    • Nuclear Engineering and Technology
    • /
    • 제52권5호
    • /
    • pp.918-924
    • /
    • 2020
  • Film boiling is of great importance in nuclear safety as it directly influences the integrity of nuclear fuel in case of accidents involving loss of coolant. Recently, nuclear power plant safety under earthquake conditions has received much attention. However, to the best of our knowledge, there are no existing studies reporting film boiling in an oscillating system. Most previous studies for film boiling were performed on stationary systems. In this study, numerical simulations were performed for saturated film boiling of water on a horizontal surface under low frequencies to investigate the effect of system oscillation on film boiling heat transfer. A coupled level-set and volume-of-fluid method was used to track the interface between the vapor and liquid phases. With a fixed oscillation amplitude, overall, heat transfer decreases with oscillation frequency. However, there is a frequency region in which heat transfer remains nearly constant. This lock-on phenomenon occurs when the oscillation frequency is near the natural bubble release frequency. With a fixed oscillation frequency, heat transfer decreases with oscillation amplitude. With a fixed maximum amplitude of the additional gravity, heat transfer is affected little by the combination of oscillation amplitude and frequency.

외관불량 배전용 콘크리트전주 건전도 평가지표 개발 (A Development of Soundness Evaluation Index for Poor Appearance Distribution Concrete Poles)

  • 왕윤찬
    • 조명전기설비학회논문지
    • /
    • 제28권9호
    • /
    • pp.35-44
    • /
    • 2014
  • This study was to secure the safety of poor appearance distribution concrete poles effectively and to reduce the replacement costs of them by developing a soundness evaluation index. The researcher of this study investigated poor appearance types of concrete pole, collected 53 of test samples, and tested pole strength. As a result of strength test, only 17 percent of poor appearance concrete poles were below 2.0 of safety factor spec. As results of multiple regression analysis, it is verified that surface air void, horizontal crack, net-shaped crack, elapsed year, vertical crack, and deterioration in concrete compressive strength have statistically negative effects on safety factor of concrete poles in a significant level. The researcher set up a soundness evaluation index by using multiple regression equation, and suggested that poor appearance concrete poles should be replaced or reinforced only in case of soundness evaluation score of 150 or above.

Quantitative observation of co-current stratified two-phase flow in a horizontal rectangular channel

  • Lee, Seungtae;Euh, Dong-Jin;Kim, Seok;Song, Chul-Hwa
    • Nuclear Engineering and Technology
    • /
    • 제47권3호
    • /
    • pp.267-283
    • /
    • 2015
  • The main objective of this study is to investigate experimentally the two-phase flow characteristics in terms of the direct contact condensation of a steam-water stratified flow in a horizontal rectangular channel. Experiments were performed for both air-water and steam-water flows with a cocurrent flow configuration. This work presents the local temperature and velocity distributions in a water layer as well as the interfacial characteristics of both condensing and noncondensing fluid flows. The gas superficial velocity varied from 1.2 m/s to 2.0 m/s for air and from 1.2 m/s to 2.8 m/s for steam under a fixed inlet water superficial velocity of 0.025 m/s. Some advanced measurement methods have been applied to measure the local characteristics of the water layer thickness, temperature, and velocity fields in a horizontal stratified flow. The instantaneous velocity and temperature fields inside the water layer were measured using laser-induced fluorescence and particle image velocimetry, respectively. In addition, the water layer thickness was measured through an ultrasonic method.

Thin-Plate-Type Embedded Ultrasonic Transducer Based on Magnetostriction for the Thickness Monitoring of the Secondary Piping System of a Nuclear Power Plant

  • Heo, Taehoon;Cho, Seung Hyun
    • Nuclear Engineering and Technology
    • /
    • 제48권6호
    • /
    • pp.1404-1411
    • /
    • 2016
  • Pipe wall thinning in the secondary piping system of a nuclear power plant is currently a major problem that typically affects the safety and reliability of the nuclear power plant directly. Regular in-service inspections are carried out to manage the piping system only during the overhaul. Online thickness monitoring is necessary to avoid abrupt breakage due to wall thinning. To this end, a transducer that can withstand a high-temperature environment and should be installed under the insulation layer. We propose a thin plate type of embedded ultrasonic transducer based on magnetostriction. The transducer was designed and fabricated to measure the thickness of a pipe under a high-temperature condition. A number of experimental results confirmed the validity of the present transducer.

AN IMPROVED ELECTRICAL-CONDUCTANCE SENSOR FOR VOID-FRACTION MEASUREMENT IN A HORIZONTAL PIPE

  • KO, MIN SEOK;LEE, BO AN;WON, WOO YOUN;LEE, YEON GUN;JERNG, DONG WOOK;KIM, SIN
    • Nuclear Engineering and Technology
    • /
    • 제47권7호
    • /
    • pp.804-813
    • /
    • 2015
  • The electrical-impedance method has been widely used for void-fraction measurement in two-phase flow due to its many favorable features. In the impedance method, the response characteristics of the electrical signal heavily depend upon flow pattern, as well as phasic volume. Thus, information on the flow pattern should be given for reliable void-fraction measurement. This study proposes an improved electrical-conductance sensor composed of a three-electrode set of adjacent and opposite electrodes. In the proposed sensor, conductance readings are directly converted into the flow pattern through a specified criterion and are consecutively used to estimate the corresponding void fraction. Since the flow pattern and the void fraction are evaluated by reading conductance measurements, complexity of data processing can be significantly reduced and real-time information provided. Before actual applications, several numerical calculations are performed to optimize electrode and insulator sizes, and optimal design is verified by static experiments. Finally, the proposed sensor is applied for air-water two-phase flow in a horizontal loop with a 40-mm inner diameter and a 5-m length, and its measurement results are compared with those of a wire-mesh sensor.

Impact test of a centrifugal pump used in nuclear power plant under aircraft crash scenario

  • Huang, Tao;Chen, Mengmeng;Li, Zhongcheng;Dong, Zhanfa;Zhang, Tiejian;Zhou, Zhiguang
    • Nuclear Engineering and Technology
    • /
    • 제53권6호
    • /
    • pp.1858-1868
    • /
    • 2021
  • Resisting an accidental impact of large commercial aircrafts is an important aspect of advanced nuclear power plant (NPP) design. Especially after the 9·11 event, some regulations were enacted, which required the design of NPPs should consider the accidental impact of large commercial aircrafts. Normal working of equipment is important for stopping reactor under an impact when an NPP is in operation. However, there is a lack of reliable analysis and research on the impact test of nuclear prototype equipment. Therefore, in order to study the response of the equipment under high acceleration impact, a centrifugal pump is selected as the research object to perform the impact test. A horizontal half-sinusoidal pulse wave was applied to the working pump. The test results show that the horizontal response of the motor and flange is greater compared to other parts, as well as the vertical response of the coupling. The stress response of the pump body support and motor support is high, hence these parts should be considered in the design of the pump. Finally, combined with the damage and stress evaluation results of the pump under different amplitudes, the ultimate impact acceleration that the pump can withstand is given.

친환경선박 인증과 연계한 톤세제도 합리화 방안 (Renewing Tonnage Taxation of Shipping in Linkage to Greenship Certification Scheme)

  • 안준건;이지은
    • 대한조선학회논문집
    • /
    • 제60권2호
    • /
    • pp.86-94
    • /
    • 2023
  • Tonnage taxation has contributed to developing the Korean maritime industry through tax relief for shipping companies. The current tonnage taxation relies on the net tonnage as an earning-capacity indicator in a merchant ship. Although the tonnage tax accords with horizontal equity, it does not match vertical equity because of the different taxable capacities of an individual company. Nowadays, maritime transport uses a dedicated vessel, and each shipping freight embeds a different value of time. It means the tonnage taxation regime should consider the added value of each shipping freight. Meanwhile, as the environmental regulations led by the International Maritime Organization are being strengthened, the Korean merchant fleet must be eco-friendly soon after. This study explores the alternative to renewing tonnage taxation by utilizing the Greenship certification and considering the ability-to-pay principle. Because the Greenship certification scheme encourages shipping decarbonization, maritime transport by a certified ocean-going vessel comes to be treated as an activity for the green economy. Special taxation for the green economy may contribute to shipping sustainability and market competitiveness.