• Title/Summary/Keyword: horizontal loading

Search Result 498, Processing Time 0.025 seconds

Seismic Performance Assessment of Reinforced Concrete Bridge Columns with Interlocking Circular Hoops (결합원형띠철근을 갖는 철근콘크리트 교각의 내진성능평가)

  • Kim, Tae-Hoon;Park, Kwang-Soon;Kang, Hyeong-Taek
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.6
    • /
    • pp.81-90
    • /
    • 2011
  • The purpose of this study was to investigate the seismic performance of reinforced concrete bridge columns with interlocking circular hoops. Three interlocking columns were tested under a constant axial load and a quasistatic, cyclically reversed horizontal load. A computer program, RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology) was used for the analysis of reinforced concrete structures. The used numerical method gives a realistic prediction of performance throughout the loading cycles for several test specimens investigated. Based on the experimental and analytical results, design recommendations are presented to improve the existing practice in the design and construction of reinforced concrete bridge columns with interlocking circular hoops.

Performance Assessment of Hollow Precast Segmental PSC Bridge Columns (중공 프리캐스트 세그먼트 PSC 교각의 성능평가)

  • Kim, Tae-Hoon;Park, Young-Ky;Kim, Young-Jin;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.51-62
    • /
    • 2010
  • The purpose of this study was to investigate the performance of hollow precast segmental PSC bridge columns. The proposed system can reduce work at a construction site and makes construction periods shorter. Shortened construction times, in turn, lead to important safety and economic advantages when traffic disruption or rerouting is necessary. Two hollow precast segmental PSC bridge columns were tested under a constant axial load and a quasistatic, cyclically reversed horizontal load. A computer program, RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures, was used. The proposed numerical method gives a realistic prediction of performance throughout the loading cycles for several test specimens investigated.

Development of Viscoelastic Finite Element Analysis Code for Pavement Structures (도로포장 구조해석을 위한 점탄성 유한요소 해석코드 개발)

  • Lee, Chang-Joon;Yoo, Pyeong-Jun;Choi, Ji-Young;Ohm, Byung-Sik
    • International Journal of Highway Engineering
    • /
    • v.14 no.5
    • /
    • pp.1-9
    • /
    • 2012
  • PURPOSES: A viscoelastic axisymmetric finite element analysis code has been developed for stress analysis of asphalt pavement structures. METHODS: Generalized Maxwell Model (GMM) and 4-node isoparametric element were employed for finite element formulation. The code was developed using $C^{+}^{+}$ computer program language and named as KICTPAVE. For the verification of the developed code, a structural model of a pavement system was constructed. The structural model was composed of three layers: asphalt layer, crushed stone layer, and soil subgrade. Two types of analysis were considered for the verification: (1)elastic static analysis, (2)viscoelastic time-dependent analysis. For the elastic static analysis, linear elastic material model was assigned to all the layers, and a static load was applied to the structural model. For the viscoelastic time-dependent analysis, GMM and linear elastic material model were assigned to the asphalt layer and all the other layers respectively, and a cyclic loading condition was applied to the structural model. RESULTS: The stresses and deformations from KICTPAVE were compared with those from ABAQUS. The analysis results obtained from the two codes showed good agreement in time-dependent response of the element under the loading area as well as the surface deformation of asphalt layer, and horizontal and vertical stresses along the axisymmetric axis. CONCLUSIONS: The validity of KICTPAVE was confirmed by showing the agreement of the analysis results from the two codes.

Constitutive Modeling of Confined Concrete under Concentric Loading

  • Lee, Cha-Don;Park, Ki-Bong;Cha, Jun-Sil
    • KCI Concrete Journal
    • /
    • v.13 no.1
    • /
    • pp.69-78
    • /
    • 2001
  • The inelastic behavior of a reinforced concrete columns is influenced by a number of factors : 1) level of axial load, 2) tie spacing, 3) volumetric ratio of lateral steel, 4) concrete strength, 5) distribution of longitudinal steel, 6) strength of lateral steel, 7) cover thickness, 8) configuration of lateral steel, 9) strain gradient, 10) strain rate, 11) the effectively confined concrete core area, and 12) amount of longitudinal steel. A new constitutive model of a confined concrete is suggested in order to investigate the nonlinear behavior of the reinforced concrete columns under concentric loading. The developed constitutive model for the confined concrete takes into account the effects of effectively confined area as well as the horizontal and longitudinal distributions of the confining pressures. None of the existing models incorporated these two main effects at the same time. A total of different six constitutive models for the behavior of the confined concrete under concentric compression were compared with the sixty-one test results reported by different researchers. The superiority of the developed model in its accuracy is demonstrated by evaluating the error function, which compares the weighted averages for the sum of squared relative differences in peak compressive strength and corresponding strain, stress at strain equal to 0.015, and total area under stress-strain curve up to strain equal to 0.015.

  • PDF

LASER HOLOGRAPHIC STUDY ON THE EFFECT OF FACIAL SKELETON TO MAXILLARY EXPANSION (상악골 확장이 안면골에 미치는 영향에 관한 Laser Holography연구)

  • Park, Jun-Sang;Yang, Won-Sik
    • The korean journal of orthodontics
    • /
    • v.16 no.2
    • /
    • pp.43-51
    • /
    • 1986
  • The highly accurate laser holographic interferemotry method was used to determine in what way low-magnitude forces during maxillary expansion are transmitted to the entire maxillary complex and its surrounding structures. The experiments were carried out on a dryed human skull which had a perfectly preserved, normally aligned maxillary dental arch and intact alveolar process. The skull was fixed within a constructed metal frame which ensured maximal stability of the object. The optical equipment and the object were mounted on antivibration table. Interferograms were taken on the lateral and frontal sides of the maxillary complex, using the 10mW He-Ne laser and the double-exposure method. Analysis of the fringe pattern on the recorded object surface was performed by graphically determining the deformation curves related to the bony surface in selected horizontal and vertical planes. On the basis of this study, the following conclusions can be drawn: 1. The density of the interference fringes was gradually increased with the degree of expansion force. 2. Mechanical reactions on the maxillary complex, circummaxillary sutures, and surrounding bones were clearly visible, even with the lowest loading degree. 3. The amount of bone displacement was greater in application of the force after $90^{\circ}$ turn than in initial application of the same force. 4. The direction of interference fringes on the bony surface was similar at all loading degrees.

  • PDF

Dynamics of Dissolved Organic Matter in eutrophic shallow Lake Kasumigaura, Japan. (수심이 얕은 부영양호에서 용존유기물의 거동)

  • 박제철
    • Journal of environmental and Sanitary engineering
    • /
    • v.12 no.3
    • /
    • pp.31-39
    • /
    • 1997
  • The seasonal and spatial changes in dissolved organic carbon(DOC) in Lake Kasumigaura, a shallow and eutrophic lake, were analyzed from October 1992 to October 1995. The proportion of T-DOC was classified by labile(L-DOC) and refractory DOC(R-DOC) on the basis of long-term incubation, fractionated the molecular weight of T-DOC by ultrafiltration. The porewater DOC were measured at sedimental surface of the central basin in order to evaluate the DOC released from the sediment. The proportion of L-DOC and R-DOC were accounted for about 15% and 85% of T-DOC in the central basin, respectively. The molecular weight(MW) distribution occupied some 60% of the low and medium MW. The horizontal variation of T-DOC concentrations trended to higher in the central basin than in the inlet of influent rivers, because of contribution by autochthonous organic carbon loading. The seasonal variation of T-DOC showed to higher summer than winter in the inlet of influent, but at the central basin it fluctuated little seasonally. During the high increase of porewater DOC in 1994 evaluated the high release possibility from the sediment surface (10cm). The present study suggests that autochthonous organic carbon loading must be controlled for improving the water quality of the eutrophic lakes.

  • PDF

Estimation of amplification of slope via 1-D site response analysis (1차원 지반응답해석을 통한 사면의 증폭특성 규명)

  • Yun, Se-Ung;Park, Du-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.620-625
    • /
    • 2009
  • The seismic slope stability is most often evaluated by the pseudo-static limit analysis, in which the earthquake loading is simplified as static inertial loads acting in horizontal and/or vertical directions. The transient loading is represented by constant acceleration via the pseudostatic coefficients. The result of a pseudostatic analysis is governed by the selection of the value of the pseudostatic coefficient. However, selection of the value is very difficult and often done in an ad hoc manner without a sound physical reasoning. In addition, the maximum acceleration is commonly estimated from the design guideline, which cannot accurately estimate the dynamic response of a slope. There is a need to perform a 2D dynamic analysis to properly define the dynamic response characteristics. This paper develops the modified one-dimensional seismic site response analysis. The modified site response analysis adjusts the density of the layers to simulate the change in mass and weight of the layers of the slope with depth. Multiple analyses are performed at various locations within the slope to estimate the change in seismic response of the slope. The calculated peak acceleration profiles with depth from the developed procedure are compared to those by the two-dimensional analyses. Comparisons show that the two methods result in remarkable match.

  • PDF

Effects of joint aspect ratio on required transverse reinforcement of exterior joints subjected to cyclic loading

  • Chun, Sung Chul
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.705-718
    • /
    • 2014
  • This paper presents an analytical model for determining the transverse reinforcement required for reinforced concrete exterior beam-column joints subjected to reversed cyclic loading. Although the joint aspect ratio can affect joint shear strength, current design codes do not consider its effects in calculating joint shear strength and the necessary amount of transverse reinforcement. This study re-evaluated previous exterior beam-column joint tests collected from 11 references and showed that the joint shear strength decreases as the joint aspect ratio increases. An analytical model was developed, to quantify the transverse reinforcement required to secure safe load flows in exterior beam-column joints. Comparisons with a database of exterior beam-column joint tests from published literature validated the model. The required sectional ratios of horizontal transverse reinforcement calculated by the proposed model were compared with those specified in ACI 352R-02. More transverse reinforcement is required as the joint aspect ratio increases, or as the ratio of vertical reinforcement decreases; however, ACI 352R-02 specifies a constant transverse reinforcement, regardless of the joint aspect ratio. This reevaluation of test data and the results of the analytical model demonstrate a need for new criteria that take the effects of joint aspect ratio into account in exterior joint design.

Performance evaluation of different strengthening measures for exterior RC beam-column joints under opening moments

  • Dar, M. Adil;Subramanian, N.;Pande, Sumeet;Dar, A.R.;Raju, J.
    • Structural Engineering and Mechanics
    • /
    • v.74 no.2
    • /
    • pp.243-254
    • /
    • 2020
  • Devastating RC structural failures in the past have identified that the behavior of beam-column joints is more critical and significantly governs the global structural response under seismic loading. The congestion of reinforcement at the beam-column joints with other constructional difficulties has escalated the attention required for strengthening RC beam-column joints. In this context, numerous studies have been carried out in the past, which mainly focused on jacketing the joints with different materials. However, there is no comparative study of different approaches used to strengthen RC beam-column joints, from efficiency and cost perspective. This paper presents a detailed investigation carried out to study the various strengthening schemes of exterior RC beam-column joints, viz., steel fiber reinforcement, carbon fiber reinforced polymer (CFRP) strengthening, steel haunch strengthening, and confining joint reinforcement. The effectiveness of each scheme was evaluated experimentally. These specimens were tested under horizontal loading that produced opening moments on the joints and their behavior was studied with emphasis on strength, displacement ductility, stiffness, and failure mechanism. Special attention was given to the study of crack-width.

Evaluation of Dynamic Behavior for Pile-Supported Slab Track System by 3D Numerical Analysis (3차원 수치해석을 통한 궤도지지말뚝의 동적거동 평가)

  • Yoo, Mintaek;Back, Mincheol;Lee, Ilhwa;Lee, Jinsun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.5
    • /
    • pp.255-264
    • /
    • 2017
  • Dynamic numerical simulation of pile-supported slab track system embedded in a soft soil and embankment was performed. 3D model was formulated in a time domain to consider the non-linearity of soil by utilizing FLAC 3D, which is a finite difference method program. Soil non-linearity was simulated by adopting the hysteric damping model and liner elements, which could consider soil-pile interface. The long period seismic loads, Hachinohe type strong motions, were applied for estimating seismic respose of the system, Parametric study was carried out by changing subsoil layer profile, embankment height and seismic loading conditions. The most of horizontal permanent displacement was initiated by slope failure. Increase of the embedded height and thickness of the soft soil layer leads increase of member forces of PHC piles; bending moment, and axial force. Finally, basic guidelines for designing pile-supported slab track system under seismic loading are recommended based on the analysis results.