• Title/Summary/Keyword: horizontal load

Search Result 951, Processing Time 0.029 seconds

Wind Load Combinations Including Torsion for Rectangular Medium-rise Buildings

  • Stathopoulos, T.;Elsharawy, M.;Galal, K.
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.3
    • /
    • pp.245-255
    • /
    • 2013
  • This paper presents the results of a set of wind tunnel tests carried out to examine wind-induced overall structural loads on rectangular medium-rise buildings. Emphasis was directed towards torsion and its correlation with peak shear forces in transverse and longitudinal directions. Two building models with the same horizontal dimensions but different gabled-roof angles ($0^{\circ}C$ and $45^{\circ}C$) were tested at different full-scale equivalent eave heights (20, 30, 40, 50, and 60 m) in open terrain exposure for all wind directions (every $15^{\circ}C$). Wind-induced pressures were integrated over building surfaces and results were obtained for along-wind force, across-wind force, and torsional moment. Maximum wind force component was given along with the other simultaneously-observed wind force components normalized by the overall peak. The study found that for flat-roofed buildings maximum torsion for winds in transverse direction is associated with 80% of the overall shear force perpendicular to the longer horizontal building dimension; and 45% of the maximum shear occurs perpendicular to the smaller horizontal building dimension. Comparison of the wind tunnel results with current torsion provisions in the American wind standard, the Canadian and European wind codes demonstrate significant discrepancies. Suggested load combination factors were introduced aiming at an adequate evaluation of wind load effects on rectangular medium-rise buildings.

Structural Performance Evaluation of System Scaffolding for Elevator Installation Work (엘리베이터 설치 작업용 시스템 비계의 구조 성능 평가)

  • Jong Moon Hwang;Gi Yeol Lee
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.3
    • /
    • pp.61-68
    • /
    • 2023
  • This study performed a structural performance evaluation of a system scaffolding for elevator installation work developed in previous studies. The structural performance was evaluated via a structural test conducted to apply the working load specified in the design standard. The deflection of the horizontal member and the stress of each member constituting the system scaffolding were measured. Consequently, the structural safety evaluation including structural behavior and required performance was performed using the deflection and stresses measured from the structural test. The structural test and safety evaluation results based on the heavy working load corresponding to the design load indicated that the deflection, which is the performance criterion of the horizontal member, did not exceed the allowable value. Further, each member's stress, which is a safety evaluation indicator, did not exceed the allowable strength for both horizontal and vertical members with bending behavior and fordable bracing with tensile behavior, while also satisfying the required safety factor. In addition, the results confirmed the safety against deformation, partial damage, and destruction owing to excessive and maximum load. Therefore, the system scaffolding developed in this study satisfies both the structural performance and safety required by the design standards; thus, it can be applied to elevator installation work sites.

The analysis of dynamic behavior for horizontal drum type HRSG (Horizontal drum type HRSG(Heat Recovery Steam Generator)의 동특성 해석)

  • Lee, Chi-Hwan;Kim, Sung-Ho;Kim, Jong-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.645-650
    • /
    • 2000
  • This dynamic analysis is performed about shutdown, load controlled and temperature controlled startup operating characteristics of the Horizontal drum type HRSG. This analysis was performed by constructing a dynamic model of the plant and running it through the appropriate.

  • PDF

Frictional responses of concrete-to-concrete bedding planes under complex loading conditions

  • Dang, Wengang;Konietzky, Heinz;Li, Xiang
    • Geomechanics and Engineering
    • /
    • v.17 no.3
    • /
    • pp.253-259
    • /
    • 2019
  • Concrete-to-concrete bedding planes (CCBP) are observed from time to time due to the multistep hardening process of the concrete materials. In this paper, a series of direct/cyclic shear tests are performed on CCBP under static and dynamic normal load conditions to study the frictional behavior effect by the shear velocities, normal impact frequencies, horizontal shear frequencies, normal impact force amplitudes, horizontal shear displacement amplitudes and normal load levels. According to the experimental results, apparent friction coefficient k ($k=F_{Shear}/F_{Normal}$) shows different patterns under static and dynamic load conditions at the stable shear stage. k is nearly constant in direct shear tests under constant normal load conditions (DCNL), while it is cyclically changing with nearly constant peak value and valley value for the direct shear tests under dynamic normal load conditions (DDNL), where k increases with decreasing normal force and decreases with increasing normal force. Shear velocity has little influence on peak values of k for the DCNL tests, but increasing shear velocity leads to increasing valley values of k for DDNL tests. It is also found that, the valley values of k ascend with decreasing impact normal force amplitude in DDNL tests. The changing pattern of k for the cyclic shear tests under constant and dynamic normal load conditions (CCNL and CDNL tests) are similar, but the peak value of k is smaller in CDNL tests than that in CCNL tests. Normal load levels, shear displacement amplitudes, vertical impact frequencies, horizontal shear frequencies and normal impact force amplitudes have little influence on the changing pattern of k for the cyclic shear tests. The tests of this study provide useful data in understanding the frictional behavior of the CCBP under distinct loadings, and these findings are very important for analyzing the stability of the jointed geotechnical structures under complicated in situ stress conditions.

The new criterion on performance-based design and application to recent earthquake codes

  • Azer A. Kasimzade;Emin Nematli;Mehmet Kuruoglu
    • Earthquakes and Structures
    • /
    • v.24 no.1
    • /
    • pp.11-20
    • /
    • 2023
  • "Performance-based design (PBD)" is based on designing a structure with choosing a performance target under design criteria to increase the structure's resistance against earthquake effect. The plastic hinge formation is determined as one of the fundamental data in finite elements nonlinear analysis to distinguish the condition of the structure where more significant potential damage could occur. If the number of plastic hinges in the structure is increased, the total horizontal load capability of the structure is increased, also. Theoretically, when the number of plastic hinges of the plane frame structure reaches "the degree of hyperstaticity plus one", the structure will reach the capability of the largest ultimate horizontal load. As the number of plastic hinges to be formed in the structure increases towards the theoretical plastic hinge number (TPHN), the total horizontal load capability of the structure increases, proportionally. In the previous studies of the authors, the features of examining the new performance criteria were revealed and it was formulated as follows "Increase the total number of plastic hinges to be formed in the structure to the number of theoretical plastic hinges as much as possible and keep the structure below its targeted performance with related codes". With this new performance criterion, it has been shown that the total lateral load capability of the building is higher than the total lateral load capability obtained with the traditional PBD method by the FEMA 440 and FEMA 356 design guides. In this study, PBD analysis results of structures with frame carrier systems are presented in the light of the Turkey Building Earthquake Code 2019. As a result of this study, it has been shown that the load capability of the structure in the examples of structures with frame carrier system increases by using this new performance criterion presented, compared to the results of the examination with the traditional PBD method in TBEC 2019.

Design Load Analysis of Current Power Rotor and Tower Interaction

  • Jo, Chul H.;Lee, Kang-Hee;Hwang, Su-Jin;Lee, Jun-Ho
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.4
    • /
    • pp.164-168
    • /
    • 2013
  • Tidal-current power is now recognized as a clean power resource. The turbine blade is the fundamental component of a tidal current power turbine. The kinetic energy available within a tidal current can be converted into rotational power by turbine blades. While in service, turbine blades are generally subjected to cyclic fatigue loading due to their rotation and the rotor-tower interaction. Predicting the fatigue life under a hydrodynamic fatigue load is very important to prevent blade failure while in service. To predict the fatigue life, hydrodynamic load data should be acquired. In this study, the vibration characteristics were analyzed based on three-dimensional unsteady simulations to obtain the cyclic fatigue load. Our results can be applied to the fatigue design of horizontal-axis tidal turbines.

Elasto-plastic Analysis of Circular Cylindrical Shell under Horizontal Load by Rigid-bodies Spring Model

  • Park, Kang-Geun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.3 s.21
    • /
    • pp.87-92
    • /
    • 2006
  • This paper is a study on the experiment and elasto-plastic discrete limit analysis of reinforced concrete circular cylindrical shell by the rigid-bodies spring model. In the rigid bodies-spring model, each collapsed part or piece of structures at the limiting state of loading is assumed to behave like rigid bodies. The present author propose new discrete elements for elasto-plastic analysis of cylindrical shell structures, that is, a rectangular-shaped cylindrical element and a rhombus-shaped cylindrical element for the improvement and expansion of this rigid-bodies spring model. In this study, it is proposed how this rigid element-bodies spring model can be applied to the elasto-plastic discrete limit analysis of cylindrical shell structures. Some numerical results of elasto-plastic discrete limit analysis and experimental results such as the curve of load-displacement and the yielding and fracturing pattern of circular cylindrical shell under horizontal load are shown.

  • PDF

Numerical Analysis of Large Deflections of Cantilever Beams (캔틸레버 보의 과대처짐 해석)

  • Lee, Byoung Koo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.1-7
    • /
    • 1990
  • A method is developed for solving the elastica of cantilever beam subjected to a tip point load and uniform load. The Bernoulli-Euler differential equation of deflected beam is used. The Runge-Kutta method and the Regula Falsi method are used to perform the integration of the differential eqution and to determine the horizontal deflection, respectively. The horizontal and vertical deflections of the free end, and the free-end rotations are calculated for a range of parameters representing variations in tip point load and uniform load. All results are presented in nondimensional forms. And some typical elastic are also presented.

  • PDF

The Mechanical Behavior of Steel Circular Caisson by Horizontal Load (水平載荷에 따른 鋼製圓筒 케이슨의 力學的 擧動)

  • 장정욱
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.10 no.3
    • /
    • pp.141-150
    • /
    • 1998
  • Model tests were performed to examine the mechanical behavior of steel circular caisson by horizontal load. It was generally found that displacements and bottom pressure of the caisson model were increased rapidly at the local plastic load. The maximum displacement was measured at the loading point, whereas the less displacement was measured at the upper part of the caisson model. The bottom pressure was getting higher, as it was nearer the loading side. Furthermore, the increase ratio of the bottom pressure was higher as the load was increased.

  • PDF

Wave load resistance of high strength concrete slender column subjected to eccentric compression

  • Jayakumar, M.;Rangan, B.V.
    • Structural Engineering and Mechanics
    • /
    • v.50 no.3
    • /
    • pp.287-304
    • /
    • 2014
  • A computer based iterative numerical procedure has been developed to analyse reinforced high strength concrete columns subjected to horizontal wave loads and eccentric vertical load by taking the material, geometrical and wave load non-linearity into account. The behaviour of the column has been assumed, to be represented by Moment-Thrust-Curvature relationship of the column cross-section. The formulated computer program predicts horizontal load versus deflection behaviour of a column up to failure. The developed numerical model has been applied to analyse several column specimens of various slenderness, structural properties and axial load ratios, tested by other researchers. The predicted values are having a better agreement with experimental results. A simplified user friendly hydrodynamic load model has been developed based on Morison equation supplemented with a wave slap term to predict the high frequency non-linear impulsive hydrodynamic loads arising from steep waves, known as ringing loads. A computer program has been formulated based on the model to obtain the wave loads and non-dimensional wave load coefficients for all discretised nodes, along the length of column from instantaneous free water surface to bottom of the column at mud level. The columns of same size and material properties but having different slenderness ratio are analysed by the developed numerical procedure for the simulated wave loads under various vertical thrust. This paper discusses the results obtained in detail and effect of slenderness in resisting wave loads under various vertical thrust.