• Title/Summary/Keyword: horizontal load

Search Result 941, Processing Time 0.026 seconds

Experimental study on the horizontal bearing characteristics of long-short-pile composite foundation

  • Chen-yu Lv;Yuan-cheng Guo;Yong-hui Li;An-di Hu-yan;Wen-min Yao
    • Geomechanics and Engineering
    • /
    • v.33 no.4
    • /
    • pp.341-352
    • /
    • 2023
  • Long-short pile composite foundations bear both vertical and horizontal loads in many engineering applications. This study used indoor model tests to determine the horizontal bearing mechanism of a composite foundation with long and short piles under horizontal loads. A custom experimental device was developed to prevent excessive eccentricity of the vertical loading device caused by the horizontal displacement. ABAQUS software was used to analyze the influence of the load size and cushion thickness on the horizontal bearing mechanism. The results reveal that a large vertical load leads to soil densification and increases the horizontal bearing capacity of the composite foundation. The magnitude of the horizontal displacement of the pile and the horizontal load borne by the pile are related to the piles' positions. Due to different pile lengths, the long piles exhibit long pile effects and experience bending deformation, whereas the short piles rotate around a point (0.2 L from the pile bottom) as the horizontal load increases. Selecting a larger cushion thickness significantly improves the horizontal load sharing capacity of the soil and reduces the horizontal displacement of the pile top.

A Review of the Types and Characteristics of Horizontal Load Affecting the Structural Safety of the Lightweight Dry Walls (건식 경량벽체의 구조안전성에 영향을 미치는 수평하중의 종류 및 특성 고찰)

  • Song, Jung-Hyeon;Roh, Yong-Woon;Kin, Ki-Jun;Choi, Soo-Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.43-45
    • /
    • 2013
  • The purpose of this study is to obtain basic data for making performance criteria about the structural safety of lightweight dry wall later by examining types and characteristics of horizontal load acting on the wall. The subjects applying horizontal load to the wall are human and objects. The types of horizontal load are classified as static load and dynamic load depending on the difference of acting time. The magnitude of horizontal load "0.25kN/㎡" defined by KBC 2009 has no significant meaning since it is the unsubstantial nominal load. The result of examining types and characteristics of horizontal load is as follows. (1) Static load by human needs to have more systematic investigation including differences in wall hardness and human weight. (2) Dynamic load by human needs to raise the significance of study result by increasing the number of subjects. (3) Dynamic load by objects needs to accumulate the load specific data for various load subjects considering real situations.

  • PDF

The Lateral Load Capacity of Bored-Precast Pile Depending on Injecting Ratio of Cement Milk in Sand (사질토 지반에서 시멘트밀크 주입비에 따른 매입말뚝의 수평지지력)

  • Hong, Won-Pyo;Yun, Jung-Mann
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.4
    • /
    • pp.99-107
    • /
    • 2013
  • In order to investigation Lateral bearing capacity of bored-precast pile, we carried out the analysis of the relationship between Lateral load and horizontal displacement using the result of horizontal pile load test. The six piles injected cement milk of 50%, 70% and 100% of the embedded length of pile were used in the horizontal pile load test. The horizontal displacement, yielding load and horizontal bearing capacity are mainly affected by The injecting ratio of cement milk (injected length of cement milk/embedded length of pile). As the injecting ratio of cement milt is increased, the starting point of horizontal displacement in piles become close to the ground surface and the amount of horizontal displacement is decreased. Also, the horizontal bearing capacity and yielding load are highly increased with increasing the ration of cement milk. The horizontal bearing capacity and yielding load of bored pile with 1 of cement milk ratio are about two or three times those of pile with 0.5 of cement milk ratio.

Effects of Minimum Horizontal Load on Structural Safety of System Supports (시스템 동바리 구조 안전성에 대한 최소 수평하중의 영향)

  • Chung, Dae Hyun;Kim, Gyeoung Yun;Won, Jeong-Hun
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.5
    • /
    • pp.37-43
    • /
    • 2015
  • This study examined the effects of the minimum horizontal load on the structural behaviors and safety of system supports. The minimum horizontal load was frequently ignored in the design of system supports even though the level of that load was specified in the code and guide in Korea such as 'Standard Specification in Temporary Construction' and 'Guide to Installation of Shores for a Concrete Bridge'. To examine the effects of considering the minimum horizontal load, the finite element analysis were performed for various system supports. By varying installing parameters of system supports such as the vertical member spacing, the installation height, and the thickness of slab, the maximum combined stress ratios were estimated to investigate the structural safety of system supports. The results showed similar axial stress in vertical members but an increase in bending stress with a consideration of the horizontal load. The combines stress ratios are remarkably increased due to the consideration of the horizontal load. Consequently, the system supports, which were initially estimated to be safe when only the vertical loads were considered, were changed to be unsafe in most cases by the effects of the both the vertical and horizontal stresses. Therefore, the minimum horizontal load following the code and the guide is an essential load that could control the structural safety of system supports.

An experimental study on the resistance and movement of short pile installed in sands under horizontal pullout load

  • Kwon, Oh Kyun;Kim, Jin-Bok;Kweon, Hyuck-Min
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.1
    • /
    • pp.87-97
    • /
    • 2014
  • In this study, the model tests were conducted on the short piles installed in sands under a horizontal pullout load to investigate their behavior characteristics. From the horizontal loading tests where dimensions of the pile diameter and length, and loading point were varied, the horizontal pullout resistance and the rotational and translational movement pattern of the pile were investigated. As a result, the horizontal pullout resistance of the pile embedded in sands was dependent on the pile length, diameter, loading point, etc. The ultimate horizontal pullout load tended to increase as the loading point (h/L) moved to the bottom from the top of the pile, regardless of the ratio between the pile length and diameter (L/D), reached the maximum value at the point of h/L = 0.75, and decreased afterwards. When the horizontal pullout load acted on the upper part above the middle of the pile, the pile rotated clockwise and moved to the pullout direction, and the pivot point of the pile was located at 150-360mm depth below the ground surface. On the other hand, when the horizontal pullout load acted on the lower part of the pile, the pile rotated counterclockwise and travelled horizontally, and the rotational angle was very small.

CFRP strengthening of steel beam curved in plan

  • Keykha, Amir Hamzeh
    • Steel and Composite Structures
    • /
    • v.41 no.5
    • /
    • pp.637-648
    • /
    • 2021
  • Nowadays, one of the practical, fast and easy ways to strengthen steel elements is the use of Carbon Fiber Reinforced Polymer (CFRP). Most previous research in the CFRP strengthening of steel members has carried out on straight steel members. The main difference between horizontal curved beams and straight beams under vertical load is the presence of torsional moment in the horizontal curved beams. In the other words, the horizontal curved beams are analyzed and designed for simultaneous internal forces included bending moment, torsional moment, and shear force. The horizontal curved steel beams are usually used in buildings, bridges, trusses, and others. This study explored the effect of the CFRP strengthening on the behavior of the horizontal curved square hollow section (SHS) steel beams. Four specimens were analyzed, one non-strengthened curved steel beam as a control column and three horizontal curved steel beams strengthened using CFRP sheets (under concentrated load and uniform distributed load). To analyze the horizontal curved steel beams, three dimensional (3D) modeling and nonlinear static analysis methods using ANSYS software were applied. The results indicated that application of CFRP sheets in some specific locations of the horizontal curved steel beams could increase the ultimate capacity of these beams, significantly. Also, the results indicated when the horizontal curved steel beams were under distributed load, the increase rate in the ultimate capacity was more than in the case when these beams were under concentrated load.

The Seismic Response Analysis of Lattice Dome According to Direction of Seismic Load (래티스돔의 지진 하중 방향에 따른 지진 응답 분석)

  • Kim, Yu-Seong;Kang, Joo-Won;Kim, Gee-Cheol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.3
    • /
    • pp.133-140
    • /
    • 2018
  • Vertical earthquake motions can occur along with horizontal earthquakes, so that Structure should be designed to resist Seismic loads in all directions. Especially, due to the dynamic characteristics such as the vibration mode, when the vertical seismic load, the dynamic response of the Spatial structure is large. In this study, the seismic response of the lattice dome to horizontal and vertical seismic loads is analyzed, and a reasonable seismic load combination is analyzed by combining horizontal and vertical seismic response results. In the combination of the horizontal seismic load, the largest result is obtained when the direction of the main axis of the structure coincides with the direction of seismic load. In addition, the combination of vertical seismic load and horizontal seismic load was the largest compared with the combination of horizontal seismic load. Therefore, it is considered that the most reasonable and stable design will be achieved if the seismic load in vertical direction is considered.

Failure Load Prediction of Tunnel Support using DOE and Optimization Algorithm (실험계획법과 최적화알고리듬을 이용한 터널지보의 파손하중 예측)

  • Lee, Dong-Woo;Cho, Seok-Swoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1480-1487
    • /
    • 2012
  • Recently, the safety of the coal-mining tunnels has been improved greatly, but accidents occur continually. Most tunnel support failures occur because the fish plate part that connects the I-beams is unable to withstand ground pressure. In the case of XX coal mine, the arch part of tunnel support bends to the upper direction. In such a case, excessive horizontal load as well as vertical load acts on the tunnel support. Horizontal load is caused by the sudden loosing of underground rock mass or the leakage of underground water, so it is fairly complex to predict horizontal loading on a tunnel support. To predict the horizontal load on this component is defined as the problem that determines the horizontal load conditions in wedges of tunnel support. This is an optimization problem in which maximum bending stress and horizontal load are considered by an objective function and design variables, respectively. Therefore, in this study, design of experiments and optimization algorithm were applied to identify the horizontal load in tunnel support.

Estimation of Coefficient of Horizontal Subgrade Reaction by the Inverse Analysis on the Lateral Load Test Results (수평재하시험 역해석을 통한 수평지반반력계수 산정)

  • Ryu, Soo-Yong;Kwak, No-Kyung;Park, Min-Chul;Jeong, Sang-Guk;Lee, Song
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.8
    • /
    • pp.15-24
    • /
    • 2012
  • Even though decision of coefficient of horizontal subgrade reaction is important in analysis for pile under lateral load, the behavior of pile under lateral loading is estimated differently due to using established suggestion. Therefore this study estimates coefficient of horizontal subgrade reaction by using Chang's method or numerical inverse analysis method with the result of lateral load test. Then this study investigates the adequacy and reliability for coefficient of horizontal subgrade reaction. The analytical results of coefficient of horizontal subgrade reaction with lateral load test showed that coefficient of horizontal subgrade reaction with Chang's method was underestimated as compared with inverse analysis. Deformation modulus of foundation by Standard Specifications for Highway Bridges and Eo${\fallingdotseq}$1,400~1,600N showed similar range like range of coefficient of horizontal subgrade reaction with lateral load test.

The characteristics of the multi-span suspension bridge with double main cables in the vertical plane

  • Zhang, Li-Wen;Xiao, Ru-Cheng;Jiang, Yang;Chai, Sheng-Bo
    • Structural Engineering and Mechanics
    • /
    • v.42 no.3
    • /
    • pp.291-311
    • /
    • 2012
  • The multi-span suspension bridge having double main cables in the vertical plane is investigated regarding endurance of live load distribution in the case of non-displaced pylon and pylon displacement. The coefficient formula of live load distribution described as the ratio of live load on the bottom cable to the top cable is obtained. Based on this formula, some function in respect of this bridge are derived and used to analyze its characteristics. This analysis targets the cable force, the cable sag and the horizontal displacement at the pylon top under live load etc. The results clarified that the performance of the live load distribution and the horizontal force of cables in the case of non-deformed pylon has a similar tendency to those in the case of deformed pylon, and the increase of pylon rigidity can increase live load distributed to the bottom cable and slightly raise the cable horizontal force under live load. However, effect on the vertical rigidity of bridge and the horizontal force increment of cables caused by live load is different in the case of non-deformed pylon and deformed pylon.