• 제목/요약/키워드: horizontal frame

검색결과 312건 처리시간 0.023초

Micro modelling of masonry walls by plane bar elements for detecting elastic behavior

  • Doven, Mahmud Sami;Kafkas, Ugur
    • Structural Engineering and Mechanics
    • /
    • 제62권5호
    • /
    • pp.643-649
    • /
    • 2017
  • Masonry walls are amongst the oldest building systems. A large portion of the research on these structures focuses on the load-bearing walls. Numerical methods have been generally used in modelling load-bearing walls during recent years. In this context, macro and micro modelling techniques emerge as widely accepted techniques. Micro modelling is used to investigate the local behaviour of load-bearing walls in detail whereas macro modelling is used to investigate the general behaviour of masonry buildings. The main objective of this study is to investigate the elastic behaviour of the load- bearing walls in masonry buildings by using micro modelling technique. In order to do this the brick and mortar units of the masonry walls are modelled by the combination of plane truss elements and plane frame elements with no shear deformations. The model used in this study has fewer unknowns then the models encountered in the references. In this study the vertical frame elements have equivalent elasticity modulus and moment of inertia which are calculated by the developed software. Under in-plane static loads the elastic displacements of the masonry walls, which are encountered in literature, are calculated by the developed software, where brick units are modelled by plane frame elements, horizontal joints are modelled by vertical frame elements and vertical joints are modelled by horizontal plane truss elements. The calculated results are compatible with those given in the references.

철근콘크리트 골조의 내진보강을 위한 신기술 개발 (Development of Now Technique for Earthquake-Resistant Retrofit in Reinforced Concrete Frame)

  • 하기주;신종학;최민권;조용태;조용태;이상목;이영범
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.69-74
    • /
    • 2000
  • In this dissertation, experimental research was carried out to study the hysteretic behavior of reinforced concrete frame designed by high performance techniques, using carbon fiber plate, diagonal bracing system with or without steel frame. Experimental programs were carried to evaluate the structural performance of such test specimens, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility etc. Specimens(RFCP, RFXB, RFXB-F), designed by the improvement of earthquake-resistant performance, were attained more load-carrying load-carrying capacity stable hysteretic behavior.

  • PDF

An Algorithmic Study on Free-gyro Positioning System( I ) - Measuring Nadir Angle by using the Motion Rate of a Spin Axis -

  • Jeong, Tae-Gweon;Park, Sok-Chu
    • 한국항해항만학회지
    • /
    • 제31권9호
    • /
    • pp.751-757
    • /
    • 2007
  • The authors aim to establish the theory necessary for developing free gyro positioning system and focus on measuring the nadir angle by using the motion rate of a free gyro. The azimuth of a gyro vector from the North can be given by using the property of the free gyro. The motion rate of the spin axis in the gyro frame is transformed into the platform frame and again into the NED (north-east-down) navigation frame. The nadir angle of a gyro vector is obtained by using the North components of the motion rate of the spin axis in the NED frame. The component has to be transformed into the horizontal component of the gyro by using the azimuth of the gyro vector and then has to be integrated over the sampling interval.

Investigation of nonlinear behaviour of reinforced concrete frames having different stiffening members

  • Gursoy, Senol
    • Computers and Concrete
    • /
    • 제13권5호
    • /
    • pp.679-694
    • /
    • 2014
  • The selected carrier systems of reinforced concrete frame buildings are quite important on structural damages. In this study are examined comparatively nonlinear behaviours of reinforced concrete frames which having different stiffening members under a horizontal load. In that respect, the study consists of six parametric models. With this purpose, nonlinear structural analyses of reinforced concrete frames which having different stiffening members were carried out with LUSAS which uses the finite element method. Thus, some conclusions and recommendations to mitigate the damage of reinforced concrete buildings in the future designs are aimed to present. The obtained results revealed that in terms of performance, the x-shaped diagonal elements can be used as an option to shear walls. In addition, it was found that frame-2, frame-3 and frame-4 showed a better performance than traditional frame system (frame-1).

프리컷 방식을 적용한 기둥-보 공법의 수평전단내력 (Shear Performance of Post and Beam Construction by Pre-Cut Process)

  • 황권환;박주생;박문재
    • Journal of the Korean Wood Science and Technology
    • /
    • 제35권6호
    • /
    • pp.1-12
    • /
    • 2007
  • 한국형 목조건축 실현 및 국내산 조림 낙엽송의 유효 이용을 위해 전통목구조에 있어 널리 사용되는 짜맞춤 공법을 응용한 기계 프리컷 방식으로 드리프트 핀 접합한 낙엽송 집성재 기둥-보 곡법에 대해 수평전단내력성능을 평가하였다. 기계 프리컷 가공된 부재로부터 기둥-보 공법으로 이루어진 골조구조체, 골조와 경골목구조 공법을 혼용한 벽구조체에 대해 현행 KS F 2154 기준에 의거하여 수평전단반복시험을 행하여 얻어진 하중-변위로부터 전단 변형과 전단력의 관계를 산출하였다. 무재하식 수평전단 가력에 의해 최대 전단내력을 골조구조체에서 1.9 kN/m, 벽구조체에서 9.7 kN/m, 전단강성계수는 167 kN/rad, 8198 kN/rad로 각각 나타났다. 골조구조체는 벽구조체에 비해 하중 분담률이 20% 정도, 강성에 있어서는 2% 정도로 나타났으며, 전단내력벽의 최대 전단내력은 골조에 비해 상대적으로 변형성능이 낮게 나타났다. 일본건축학회의 벽배율 산정법에 의한 전단내력벽의 벽배율은 1.5로 산출되었다. 전단내력벽의 전단성능 향상을 위해서는 주각부 및 기둥-보, 못과 면재에 대한 차후 검토와 수평전단 가력법에 대한 검토가 필요한 것으로 판단되었다.

철근콘크리트 내진벽의 구조성능 평가 및 개선 (Evaluation and Improvement of Structural Performance of Reinforced Shear Walls Under Load Reversals)

  • 신종학;하기주;안준석;주정준
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.683-688
    • /
    • 1999
  • The purpose of this study is to develop and evaluate the structural performance of various shear walls, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility etc. under load reversals. For the diagonal reinforced slit and infilled shear wall specimens, it was found that the failure mode shows very effective crack control and crashing due to slippage prevention of boundary region and reduction of diagonal tension rather than the brittle shear and diagonal tension failure. The ductility of specimens designed by the diagonal reinforcement for the slit and infilled shear wall was increased 1.72~1.81 times in comparison with the fully rigid shear wall frame. Maximum horizontal load-carrying capacity of specimens designed by the diagonal reinforcement ratio the slit and infilled shear wall was increased respectively by 1.14 times and 1.49 times in comparison with the standard fully rigid shear wall frame.

  • PDF

Fundamental Study on a New Evaluation Method of The Safety Prefabricated Scaffolds

  • Takahashi, Hiroki;Ohdo, Katsutoshi;Takanashi, Seiji
    • International Journal of Safety
    • /
    • 제9권1호
    • /
    • pp.21-29
    • /
    • 2010
  • When a new member of a scaffold is developed, it is necessary to follow the standard. Therefore, all scaffolds will assume the same structure. The aim of this study was to establish a new method for evaluating scaffold performance. In the present study, a buckling analysis of prefabricated scaffolds was executed, using the shear rigidity of the vertical and the horizontal frames as parameters. From the results, an equation is proposed for evaluating the strength of prefabricated scaffolds.

Sidesway가 생기는 강구조의 Moment분배법 완전해법

  • 김택진
    • 건축사
    • /
    • 11호통권82호
    • /
    • pp.26-35
    • /
    • 1975
  • The present Structuralists have usually calculated the end Moment of Rigid-frame members by using the Moment Distribution Method, presented by Hardy Cross in 1930, on the Basis of Elastic Law. But this method is considered to be an unfinished solution in case of the moment condition, which the Non-Equilibrium distributed loads or the Horizontal Force acted upon it result in deflection. Hence, after finishing the calculation of stress by means of the Moment Distribution Method, the stress condition due to Horizontal Forces had to be corrected approximatly. However we can directly get the solution of Rigid-frame having sidesway not by above method but by the Moment Distribution computation. Consequently this method is regarded as a Perfect Moment Distribution Method. Here 1 present.

  • PDF

응력 및 변위를 최소화하기 위한 단엽식 고분자 판막의 설계 (Design of the monoleaflet polymer valve to minimize stress and displacement)

  • 한근조;김상현
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1993년도 추계학술대회
    • /
    • pp.99-103
    • /
    • 1993
  • A monoleaflet polymer artificial heart valve which showed the remarkable improvement in pressure drop compared with other types of artificial valve was designed to decrease the deflection in vertical direction and the displacement or the valve tip in horizontal direction. Stress distribution change was studied as the location of the supporting members or the valve frame changed. And it was found that using the valve tip horizontal displacement the minimum valve thickness could be obtained in order to prevent the gap between the valve tip and the frame wall.

  • PDF

Plastic design of seismic resistant reinforced concrete frame

  • Montuori, Rosario;Muscati, Roberta
    • Earthquakes and Structures
    • /
    • 제8권1호
    • /
    • pp.205-224
    • /
    • 2015
  • A new method for designing moment resisting concrete frames failing in a global mode is presented in this paper. Starting from the analysis of the typical collapse mechanisms of frames subjected to horizontal forces, the method is based on the application of the kinematic theorem of plastic collapse. The beam section properties are assumed to be known quantities, because they are designed to resist vertical loads. As a consequence, the unknowns of the design problem are the column sections. They are determined by means of design conditions expressing that the kinematically admissible multiplier of the horizontal forces corresponding to the global mechanism has to be the smallest among all kinematically admissible multipliers. In addition, the proposed design method includes the influence of second-order effects. In particular, second-order effects can play an important role in the seismic design and can be accounted for by means of the mechanism equilibrium curves of the analysed collapse mechanism. The practical application of the proposed methodology is herein presented with reference to the design of a multi-storey frame whose pattern of yielding is validated by means of push-over analysis.