• Title/Summary/Keyword: honey potential

Search Result 38, Processing Time 0.021 seconds

Opportunities and Constraints of Beekeeping Practices in Ethiopia

  • Dekebo, Aman;Bisrat, Daniel;Jung, Chuleui
    • Journal of Apiculture
    • /
    • v.34 no.2
    • /
    • pp.169-180
    • /
    • 2019
  • Beekeeping has been practiced for centuries in Ethiopia. Currently, there are three broad classification of honey production systems in Ethiopia; these are traditional (forest and backyard), transitional(intermediate) and modern(frame beehive) systems. Ethiopian honey production is characterized by the widespread use of traditional technology resulting in relatively low honey yield and poor honey quality. Despite the challenges and constraints, Ethiopia has the largest bee population in Africa with over 10 million bee colonies, of which 5 to 7.5million are hived while the remaining exists in the wild. Consequently, these figures, indeed, has put Ethiopia as the leading honey and beeswax producer in Africa. In fact, Ethiopia has even bigger potential than the current honey production due to the availability of plenty apicultural resources such as natural forests with adequate apiculture flora, water resources and a high number of existing bee colonies. However, lack of well-trained man powers, lack of standardization, problems associated with honey bee pests and diseases, high price and limited availability of modern beekeeping equipment's for beekeepers and absconding and migration of bee colonies are some of the major constraints reported for beekeeping in Ethiopia. In this review, an attempt was made to present all beekeeping practices in Ethiopia. The opportunities and major constraints of the sector were also discussed.

Chemical Composition of Korean Natural Honeys and Sugar Fed Honeys (천연꿀과 사양꿀의 성분 분석)

  • Kim, Se Gun;Hong, In Phyo;Woo, Soon Ok;Jang, Hye Ri;Jang, Jae Seon;Han, Sang Mi
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.1
    • /
    • pp.112-119
    • /
    • 2017
  • In this study, we investigated and compared some chemical properties of Korean natural honeys and sugar-fed honeys for their quality characteristics. The natural honey samples were monofloral from chestnut and acacia flowers, and the sugar-fed honey samples were collected from honeybees feeding on sugar cane and sugar beet. The chemical properties of the honey samples, such as moisture, total protein, total lipids, ash, carbohydrate, minerals, vitamins, and free amino acids were determined. The moisture content was $18.5{\pm}0.9%$ in natural acacia honey, $17.2{\pm}0.9%$ in natural chestnut honey, $19.6{\pm}0.9%$ in sugar cane-fed honey, and $24.8{\pm}%$ in sugar beet-fed honey. The total protein and ash contents were the highest in natural chestnut honey. Maltose and sucrose were not detected in natural honeys but were detected at 2~7% in sugar-fed honeys. The vitamin, mineral, and free amino acids contents of natural honeys were higher than sugar-fed honeys. The natural chestnut honey is the highest in honeys. These results confirmed that the quality of natural honey was better than that of sugar-fed honey. Also, the vitamin, mineral, and free amino acids contents are potential characteristics for distinguishing between natural and sugar-fed honeys.

Evaluation of Honey and Rice Syrup as Replacements for Sorbitol in the Production of Restructured Duck Jerky

  • Triyannanto, Endy;Lee, Keun Taik
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.2
    • /
    • pp.271-279
    • /
    • 2016
  • The aim of this study was to evaluate the potential of natural humectants such as honey and rice syrup to replace sorbitol in the production of restructured duck jerky. Each humectant was mixed at 3%, 6%, and 10% (wt/wt) concentrations with the marinating solution. The values of water activity and the moisture-to-protein ratio of all of the samples were maintained below 0.75. Jerky samples treated with honey retained more moisture than those exposed to other treatments. Among all samples, those treated with 10% sorbitol produced the highest processing yield and the lowest shear force values. The highest $L^*$ value and the lowest $b^*$ value were observed for the sorbitol-treated sample, followed by the rice syrup- and honey-treated samples. Duck jerky samples treated with 10% honey showed the highest scores for the sensory parameters evaluated. The overall acceptability scores of samples treated with rice syrup were comparable with those of samples treated with sorbitol. Microscopic observation of restructured duck jerky samples treated with honey showed stable forms and smaller pores when compared with other treatments.

A PRELIMINARY STUDY ON THE CHARACTERIZATION OF HONEY BY NEAR INFRARED SPECTROSCOPY

  • Davies, Anthony M.C.;Radovic, Branka;Fearn, Tom;Anklam, Elke
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1052-1052
    • /
    • 2001
  • Hear infrared (NIR) spectra were measured, at five temperatures, for forty-eight samples of honey, from a variety of geographical and botanical sources, and the data has been used to explore the possibility of using NIR spectroscopy for testing label claims concerning the geographical and botanical source of honey being offered for sale to the public. These results demonstrate that the successful characterization of the botanical source of a honey may be obtained by NIR spectroscopy. Further work with large numbers of samples and groups will be required to realized this potential. Additional analysis of these data suggest that research into new ways of obtaining information on the change of absorption with temperature might be beneficial for a range of technologies.

  • PDF

Honey bees and their brood: a potentially valuable resource of food, worthy of greater appreciation and scientific attention

  • Ghosh, Sampat;Meyer-Rochow, Victor Benno;Jung, Chuleui
    • Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.293-304
    • /
    • 2021
  • Despite the consumption of bee brood in several parts of the world, particularly in the tropical areas, the practice has received comparatively little attention. We have reviewed all the available information on the nutrient composition and functional properties of different developmental stages of honey bee workers belonging to different species and subspecies. Noticing the competent nutrient composition of, in particular, honey bee brood, pupae, and prepupae, we suggest that they could be a potential source of human nutrition as well as animal feed. Moreover, drone brood is an ideal candidate for use as a food or as food ingredient. However, to analyze the functional properties of different honey bee species remains a task for further analysis.

Acacia Honey Exerts Anti-Inflammatory Activity through Inhibition of NF-κB and MAPK/ATF2 Signaling Pathway in LPS-Stimulated RAW264.7 Cells

  • Kim, Ha Na;Park, Su Bin;Kim, Jeong Dong;Jeong, Hyung Jin;Jeong, Jin Boo
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.97-97
    • /
    • 2018
  • Honey used as conventional medicine has various pharmacological properties. In the honey and anti-inflammatory effect, Gelam honey and Manuka honey has been reported to exert anti-inflammatory activity. However, the anti-inflammatory effect and potential mechanisms of acacia honey (AH) are not well understood. In this study, we investigated anti-inflammatory activity and mechanism of action of AH in LPS-stimulated RAW264.7 cells. AH attenuated NO production through inhibition of iNOS expression in LPS-stimulated RAW264.7 cells. AH also decreased the expressions of $IL-1{\beta}$, IL-6 and $TNF-{\alpha}$ as pro-inflammatory cytokines, and MCP-1 expression as a pro-inflammatory chemokine. In the elucidation of the molecular mechanisms, AH decreased LPS-mediated $I{\kappa}B-{\alpha}$ degradation and subsequent nuclear accumulation of p65, which resulted in the inhibition of $NF-{\kappa}B$ activation in RAW264.7 cells. AH dose-dependently suppressed LPS-mediated phosphorylation of ERK1/2 and p38 in RAW264.7 cells. In addition, AH significantly inhibited ATF2 phosphorylation and nuclear accumulation of ATF2 in LPS-stimulated RAW264.7 cells. These results suggest that AH has an anti-inflammatory effect, inhibiting the production of pro-inflammatory mediators such as NO, iNOS, $TNF-{\alpha}$, IL-6, $IL-1{\beta}$ and MCP-1 via interruption of the $NF-{\kappa}B$ and MAPK/ATF2 signaling pathways.

  • PDF

Anti-Inflammatory Activity of Acacia Honey through Inhibition of NF-κB and MAPK/ATF2 Signaling Pathway in LPS-Stimulated RAW264.7 Cells

  • Kim, Ha Na;Son, Kun Ho;Jeong, Hyung Jin;Park, Su Bin;Kim, Jeong Dong;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.31 no.6
    • /
    • pp.612-621
    • /
    • 2018
  • Honey used as conventional medicine has various pharmacological properties. In the honey and anti-inflammatory effect, Gelam honey and Manuka honey has been reported to exert anti-inflammatory activity. However, the anti-inflammatory effect and potential mechanisms of acacia honey (AH) are not well understood. In this study, we investigated anti-inflammatory activity and mechanism of action of AH in LPS-stimulated RAW264.7 cells. AH attenuated NO production through inhibition of iNOS expression in LPS-stimulated RAW264.7 cells. AH also decreased the expressions of $IL-1{\beta}$, IL-6 and $TNF-{\alpha}$ as pro-inflammatory cytokines, and MCP-1 expression as a pro-inflammatory chemokine. In the elucidation of the molecular mechanisms, AH decreased LPS-mediated $I{\kappa}B$-${\alpha}$ degradation and subsequent nuclear accumulation of p65, which resulted in the inhibition of $NF-{\kappa}B$ activation in RAW264.7 cells. AH dose-dependently suppressed LPS-mediated phosphorylation of ERK1/2 and p38 in RAW264.7 cells. In addition, AH significantly inhibited ATF2 phosphorylation and nuclear accumulation of ATF2 in LPS-stimulated RAW264.7 cells. These results suggest that AH has an anti-inflammatory effect, inhibiting the production of pro-inflammatory mediators such as NO, iNOS, $TNF-{\alpha}$, IL-6, $IL-1{\beta}$ and MCP-1 via interruption of the $NF-{\kappa}B$ and MAPK/ATF2 signaling pathways.

Flavonoid in Clover Honey Exerts a Hypnotic Effect via Positive Allosteric Modulation of the GABAA-BZD Receptor in Mice

  • Han, Kyoung-Sik;Yang, Hyejin;Yoon, Minseok
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.6
    • /
    • pp.1364-1369
    • /
    • 2017
  • There is a growing demand for natural sleep aids due to various side effects of long-term administration of pharmacological treatments for insomnia. Honey has been reported to exhibit numerous potential health benefits, and it is hypothesized that honey may favorably affect insomnia treatment. Therefore, this study was performed to investigate the possible hypnotic effect of clover honey (CH) and to determine its in vivo mechanism. The total flavonoid content (TFC) of CH and fractions extracted with ethylacetate (EtOAc) and $H_2O$ was measured. The pentobarbital-induced sleep test using $GABA_A$-benzodiazepine (BZD) agonists and antagonists was conducted to evaluate the potential mechanism of action behind the sedative-hypnotic activity of CH in mice. The results showed that administration of 500 and 1,000 mg/kg of CH significantly (p<0.01) reduced the sleep latency to a level similar to that of diazepam (DZP, 2 mg/kg), and 1,000 mg/kg of CH significantly (p<0.01) prolonged the sleep duration, which was comparable to that of DZP (2 mg/kg). Administration of the EtOAc fraction with a higher TFC significantly reduced the sleep latency at 50 to 200 mg/kg and prolonged the sleep duration at 100 to 200 mg/kg, which were comparable to those after administration of DZP (2 mg/kg). However, co-administration of CH and EtOAc with flumazenil, a specific $GABA_A-BZD$ receptor antagonist, blocked the hypnotic effect. Our findings suggest that the hypnotic activity of CH may be attributed to allosteric modulation of $GABA_A-BZD$ receptors. The TFC of CH is expected to be a key factor that contributes to its hypnotic effect.

Evaluation of stingless bee (Tetragonula pagdeni) honey properties and melissopalynological analysis from different geographical origins in Thailand

  • Jakkrawut Maitip;Amonwit Polgate;Woranika Promsart;Jinatchaya Butdee;Athitta Rueangwong;Tanatip Sittisorn;Wankuson Chanasit;Satasak Jorakit;Prapai Kodcharin
    • Journal of Ecology and Environment
    • /
    • v.48 no.1
    • /
    • pp.24-31
    • /
    • 2024
  • Background: Honey from different geographical origins can have distinct characteristics due to variations in the floral sources available to stingless bees in different regions. The most abundant stingless bee for meliponiculture in Thailand is Tetragonula pagdeni. However, only a few studies about the properties of honey from a different origin were carried out. The objective of this study was focused on a comparative study to evaluate the melissopalynological, physicochemical, antioxidant activities, and total phenolic contents (TPCs) of stingless bee honey produced by T. pagdeni from different parts of Thailand. Results: Fifty honey samples were collected from five locations, and the physicochemical properties of T. pagdeni honey samples are acidic (pH 3.02-4.15) and have a high water content (18.42-25.06 %w/w), which is related to the regions of meliponary. Melisopalynological analysis reveals the predominant pollen from Melaleuca quinquenervia, Cocus nuciferca, Nephelium lappaceum, Salacca wallichiana, and multiflora honey. All honey samples were analyzed for their TPC and 2,2-diphenyl1-picrylhydrazyl radical scavenging activity. The results show that all samples had high TPC and antioxidant activities with a strong correlation (p < 0.05). Conclusions: The data from this study indicates the importance of geographical origin, which links physicochemical properties, phenolic compounds, and functional characteristics to their floral. Besides, the floral sources and harvesting location affected the properties of stingless bee honey. Our results identify Melaleuca honey as a promising source of phenolic content and antioxidant activity that can be used as a functional food, as well as multiflora and Cocus honey. However, further studies are required to characterize the phenolic compound and its biological potential, which could be a stingless bee honey biomarker and quality control, simultaneously with the physicochemical analysis.

Potential Yeast from Indonesian Wild Forest Honey Showing Ability to Produce Lipase for Lipid Transesterification

  • Palilu, Prayolga Toban;Kasiamdari, Rina Sri;Ilmi, Miftahul
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.4
    • /
    • pp.555-564
    • /
    • 2019
  • Biodiesel is produced through the transesterification process in the presence of alcohol and a catalyst that catalyzes the conversion of triglycerides to esters and glycerol compounds. A more optimal product conversion can be achieved using enzymes, such as lipase. Lipase is reported to be produced in osmophilic yeasts due to the low water content in their natural habitats. Wild forest honey is one of the osmophilic natural habitats in Indonesia. However, lipase-producing yeast has not been reported in the Indonesian honey. In this study, we screened the lipase-producing yeasts isolated from wild forest honey collected from Central Sulawesi. The production profile and activity of lipase were determined at different pH values and temperatures. One promising yeast was isolated from the honey, which was identified as Zygosaccharomyces mellis SG 1.2 based on ITS sequence. The maximum lipase production (24.56 ± 1.30 U/mg biomass) was achieved by culturing the strain in a medium containing 2% olive oil as a carbon source at pH 7 and 30℃ for 40 h. The optimum pH and temperature for lipase activity were 6 and 55℃, respectively. The enzyme maintained 80% of its activity upon incubation at 25℃ for 4 h. However, the enzyme activity decreased by more than 50% upon incubation at 35 and 40℃ for 2 h. This is the first study to report the lipase producing capability of Z. mellis. Further studies are needed to optimize the enzyme production.