DOI QR코드

DOI QR Code

Evaluation of stingless bee (Tetragonula pagdeni) honey properties and melissopalynological analysis from different geographical origins in Thailand

  • Jakkrawut Maitip (Faculty of Science, Energy and Environment, King Mongkut's University of Technology North Bangkok, Rayong Campus) ;
  • Amonwit Polgate (Faculty of Science, Energy and Environment, King Mongkut's University of Technology North Bangkok, Rayong Campus) ;
  • Woranika Promsart (Faculty of Science, Energy and Environment, King Mongkut's University of Technology North Bangkok, Rayong Campus) ;
  • Jinatchaya Butdee (Faculty of Science, Energy and Environment, King Mongkut's University of Technology North Bangkok, Rayong Campus) ;
  • Athitta Rueangwong (Faculty of Science, Energy and Environment, King Mongkut's University of Technology North Bangkok, Rayong Campus) ;
  • Tanatip Sittisorn (Faculty of Science, Energy and Environment, King Mongkut's University of Technology North Bangkok, Rayong Campus) ;
  • Wankuson Chanasit (Department of Biology, Faculty of Science, Thaksin University) ;
  • Satasak Jorakit (SCG Chemicals Public Company Limited) ;
  • Prapai Kodcharin (Community Enterprise of Stingless Beekeeper of Ban Thap Ma)
  • Received : 2023.10.10
  • Accepted : 2023.11.24
  • Published : 2024.03.31

Abstract

Background: Honey from different geographical origins can have distinct characteristics due to variations in the floral sources available to stingless bees in different regions. The most abundant stingless bee for meliponiculture in Thailand is Tetragonula pagdeni. However, only a few studies about the properties of honey from a different origin were carried out. The objective of this study was focused on a comparative study to evaluate the melissopalynological, physicochemical, antioxidant activities, and total phenolic contents (TPCs) of stingless bee honey produced by T. pagdeni from different parts of Thailand. Results: Fifty honey samples were collected from five locations, and the physicochemical properties of T. pagdeni honey samples are acidic (pH 3.02-4.15) and have a high water content (18.42-25.06 %w/w), which is related to the regions of meliponary. Melisopalynological analysis reveals the predominant pollen from Melaleuca quinquenervia, Cocus nuciferca, Nephelium lappaceum, Salacca wallichiana, and multiflora honey. All honey samples were analyzed for their TPC and 2,2-diphenyl1-picrylhydrazyl radical scavenging activity. The results show that all samples had high TPC and antioxidant activities with a strong correlation (p < 0.05). Conclusions: The data from this study indicates the importance of geographical origin, which links physicochemical properties, phenolic compounds, and functional characteristics to their floral. Besides, the floral sources and harvesting location affected the properties of stingless bee honey. Our results identify Melaleuca honey as a promising source of phenolic content and antioxidant activity that can be used as a functional food, as well as multiflora and Cocus honey. However, further studies are required to characterize the phenolic compound and its biological potential, which could be a stingless bee honey biomarker and quality control, simultaneously with the physicochemical analysis.

Keywords

Acknowledgement

The authors would like to thank the stingless beekeepers in Chiang Mai, Rayong, Chanthaburi, Phatthalung, and Songkhla provinces for supporting the stingless bee honey samples.

References

  1. Abd Jalil MA, Kasmuri AR, Hadi H. Stingless bee honey, the natural wound healer: a review. Skin Pharmacol Physiol. 2017;30(2):66-75. https://doi.org/10.1159/000458416.
  2. Acquarone C, Buera P, Elizalde B. Pattern of pH and electrical conductivity upon honey dilution as a complementary tool for discriminating geographical origin of honeys. Food Chem. 2007;101:695-703. https://doi.org/10.1016/j.foodchem.2006.01.058.
  3. Avila S, Hornung PS, Teixeira GL, Malunga LN, Apea-Bah FB, Beux MR, et al. Bioactive compounds and biological properties of Brazilian stingless bee honey have a strong relationship with the pollen floral origin. Food Res Int. 2019;123:1-10. https://doi.org/10.1016/j.foodres.2019.01.068.
  4. Beretta G, Granata P, Ferrero M, Orioli M, Facino RM. Standardization of antioxidant properties of honey by a combination of spectrophotometric/fluorimetric assays and chemometrics. Anal Chim Acta. 2005;533:185-91. https://doi.org/10.1016/j.aca.2004.11.010.
  5. Biluca FC, Braghini F, Gonzaga LV, Costa ACO, Fett R. Physicochemical profiles, minerals and bioactive compounds of stingless bee honey (Meliponinae). J Food Compos Anal. 2016;50:61-9. https://doi.org/10.1016/j.jfca.2016.05.007.
  6. Brown E, O'Brien M, Georges K, Suepaul S. Physical characteristics and antimicrobial properties of Apis mellifera, Frieseomelitta nigra and Melipona favosa bee honeys from apiaries in Trinidad and Tobago. BMC Complement Med Ther. 2020;20(1):85. https://doi.org/10.1186/s12906-020-2829-5.
  7. Chuttong B, Chanbang Y, Burgett M. Meliponiculture. Bee World. 2014;91(2):41-5. https://doi.org/10.1080/0005772X.2014.11417595.
  8. Crane E. A book of honey. Sao Paulo: Livraria Nobel SA; 1980.
  9. do Nascimento AS, Marchini LC, de Carvalho CAL, Araujo DFD, de Olinda RA, da Silveira TA. Physical-chemical parameters of honey of stingless bee (Hymenoptera: Apidae). Am Chem Sci J. 2015;7(3):139-49. https://doi.org/10.9734/ACSJ/2015/17547
  10. Jantakee K, Tragoolpua Y. Activities of different types of Thai honey on pathogenic bacteria causing skin diseases, tyrosinase enzyme and generating free radicals. Biol Res. 2015;48(1):4. https://doi.org/10.1186/0717-6287-48-4.
  11. Karabagias IK, Dimitriou E, Kontakos S, Kontominas MG. Phenolic profile, colour intensity, and radical scavenging activity of Greek unifloral honeys. Eur Food Res Technol. 2016;242:1201-10. https://doi.org/10.1007/s00217-015-2624-6.
  12. Karabagias IK, Karabournioti S, Karabagias VK, Badeka AV. Palynological, physico-chemical and bioactivity parameters determination, of a less common Greek honeydew honey: "dryomelo". Food Control. 2020;109:106940. https://doi.org/10.1016/j.foodcont.2019.106940.
  13. Khongkwanmueang A, Nuyu A, Straub L, Maitip J. Physicochemical profiles, antioxidant and antibacterial capacity of honey from stingless bee Tetragonula laeviceps species complex. E3S Web of Conf. 2020;141:03007. https://doi.org/10.1051/e3sconf/202014103007.
  14. Louveaux J, Maurizio A, Vorwohl G. Methods of melissopalynology. Bee World. 1978;59(4):139-57. https://doi.org/10.1080/0005772X.1978.11097714.
  15. Nordin A, Sainik NQaV, Chowdhury SR, Saim AB, Idrus RBH. Physicochemical properties of stingless bee honey from around the globe: a comprehensive review. J Food Compos Anal. 2018;73:91-102. https://doi.org/10.1016/j.jfca.2018.06.002.
  16. Pham TN, Nguyen TV, Le DT, Diep LMN, Nguyen KN, To THN, et al. Phenolic profiles, antioxidant, antibacterial activities and nutritional value of Vietnamese honey from different botanical and geographical sources. AgriEngineering. 2022;4(4):1116-38. https://doi.org/10.3390/agriengineering4040069.
  17. Pimentel RB, da Costa CA, Albuquerque PM, Junior SD. Antimicrobial activity and rutin identification of honey produced by the stingless bee Melipona compressipes manaosensis and commercial honey. BMC Complement Altern Med. 2013;13(1):151. https://doi.org/10.1186/1472-6882-13-151.
  18. Ramon-Sierra JM, Ruiz-Ruiz JC, de la Luz Ortiz-Vazquez E. Electrophoresis characterisation of protein as a method to establish the entomological origin of stingless bee honeys. Food Chem. 2015;183:43-8. https://doi.org/10.1016/j.foodchem.2015.03.015.
  19. Ratiu IA, Al-Suod H, Bukowska M, Ligor M, Buszewski B. Correlation study of honey regarding their physicochemical properties and sugars and cyclitols content. Molecules. 2019;25(1):34. https://doi.org/10.3390/molecules25010034.
  20. Shamsudin S, Selamat J, Sanny M, Abd. Razak SB, Jambari NN, Mian Z, et al. Influence of origins and bee species on physicochemical, antioxidant properties and botanical discrimination of stingless bee honey. Int J Food Prop. 2019;22(1):239-64. https://doi.org/10.1080/10942912.2019.1576730.
  21. Solayman M, Islam MA, Paul S, Ali Y, Khalil MI, Alam N, et al. Physicochemical properties, minerals, trace elements, and heavy metals in honey of different origins: a comprehensive review. Compr Rev Food Sci Food Saf. 2016;15(1):219-33. https://doi.org/10.1111/1541-4337.12182.
  22. Thakodee T, Deowanish S, Duangmal K. Melissopalynological analysis of stingless bee (Tetragonula pagdeni) honey in Eastern Thailand. J Asia-Pac Entomol. 2018;21:620-30. https://doi.org/10.1016/j.aspen.2018.04.003.
  23. Vit P, Medina M, Eunice Enriquez M. Quality standards for medicinal uses of Meliponinae honey in Guatemala, Mexico and Venezuela. Bee World. 2004;85(1):2-5. https://doi.org/10.1080/0005772X.2004.11099603.
  24. White Jr JW. The composition of honey. Bee World. 1957;38(3):57-66. https://doi.org/10.1080/0005772X.1957.11094976.
  25. Zarei M, Fazlara A, Tulabifard N. Effect of thermal treatment on physicochemical and antioxidant properties of honey. Heliyon. 2019;5(6):e01894. https://doi.org/10.1016/j.heliyon.2019.e01894.
  26. Zawawi N, Zhang J, Hungerford NL, Yates HSA, Webber DC, Farrell M, et al. Unique physicochemical properties and rare reducing sugar trehalulose mandate new international regulation for stingless bee honey. Food Chem. 2022;373(Pt B):131566. https://doi.org/10.1016/j.foodchem.2021.131566.
  27. Zulkhairi Amin FA, Sabri S, Mohammad SM, Ismail M, Chan KW, Ismail N, et al. Therapeutic properties of stingless bee honey in comparison with European bee honey. Adv Pharmacol Sci. 2018;2018:6179596. https://doi.org/10.1155/2018/6179596.