• Title/Summary/Keyword: homozygous

Search Result 361, Processing Time 0.027 seconds

Polymorphism in CYP2C9 as a Non-Critical Factor of Warfarin Dosage Adjustment in Korean Patients

  • Lee, Suk-Hyang;Kim, Jae-Moon;Chung, Chin-Sang;Cho, Kyoung-Joo;Kim, Jeong-Hee
    • Archives of Pharmacal Research
    • /
    • v.26 no.11
    • /
    • pp.967-973
    • /
    • 2003
  • Cytochrome P4502C9(CYP2C9) is largely responsible for terminating anticoagulant effect by hydroxylation of S-warfarin to inactive metabolites. Mutations in the CYP2C9 gene result in the expression of allelic variants, CYP2C9*2 and CYP2C9*3 with reduced enzyme activity compared to wild type CYP2C9 *1. The aim of this study was to assess relationship between requirement of warfarin dose and polymorphism in CYP2C9 in Korean population. Patients on warfarin therapy for longer than 1 year were included from July 1999 to December 2000 and categorized as one of four groups; regular dose non-bleeding, regular dose bleeding, low dose non-bleeding and low dose bleeding. Low dose was defined as less than 10 mg/week for 3 consecutive monthly follow-ups. Bleeding complications included minor and major bleedings. Blood samples were processed for DNA extraction, genotyping and sequencing to detect polymorphism in CYP2C9. Demographic data, warfarin dose per week, prothrombin time (INR), indications and co-morbid diseases were assessed for each group. Total 90 patients on warfarin were evaluated; The low dose group has taken warfarin 7.6$\pm$1.7 mg/week, which was significantly lower than 31.4$\pm$0.9 mg/week in the regular dose group (p<0.0001). The measured INR in the low dose group was similar to that of the regular dose group (2.3$\pm$0.7 vs. 2.3$\pm$0.6, p=0.9). Even though there was a higher possibility of CYP2C9 variation in the low dose group, no polymorphism in CYP2C9 was detected. All patients were homozygous C416 in exon 3 for CYP2C9*2 and A1061 in exon 7 for CYP2C9*3. The DNA sequencing data confirmed the homozygous C416 and A 1061 alleles. In conclusion, polymorphism in CYP2C9 is not a critical factor for assessing warfarin dose requirement and risk of bleeding complications in a Korean population.

Characterization of the 5-methyltryptophan Resistant Mutant Lines Selected by Mutagenized Seeds in Rice (돌연변이 벼 종자로부터 선발된 5-methyltryptophan 저항성 계통의 특성)

  • 이효연;배창휴;임용표;박노동;조백호;이수인;최해춘;김호일
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.6
    • /
    • pp.453-459
    • /
    • 2000
  • Three rice (Oryza sativa L. var Dong-Jin) mutants (DTR1, DTR2, DTR3) resistant to S-methyltryptophan (5MT) were selected by mutagenized M3 seeds. The frequency of chlorophyll mutations induced by the EMS (0.2%) treatment performed 2 hours after flowering is clearly higher than that induced by other treatments in M1 generation. Progeny obtained from the self-pollinating of 5MT-resistant lines segregated with 3 : 1 of resistant to sensitive ratio. Furthermore, the ratio of homozygote to heterozygote in 5MT-resistant plants of the M4 generation was 1:2. These results show that 5MT resistance was inherited as a single dominant nuclear gene. The resistance was also expressed in callus derived from seeds. Total free amino acid content in homozygous seeds of DTR1 and DTR2 showed about 1.7 fold-increased compared to the wild-type seeds. In particular, the levels of phenylalanine and Iysine were, respectively, 6.2 and 3.2 times higher than those in the wild-type seeds. However, seeds of DTR3 had lower levels of free amino acid than the wild-type seeds. This result indicate that these mutants as a significant step towards the production of new rice with balanced amino acid content.

  • PDF

Ac/Ds-mediated gene tagging system in rice

  • Eun, Moo-Young;Yun, Doh-Won;Nam, Min-Hee;Yi, Gi-Hwan;Han, Chang-Deok;Kim, Doh-Hoon;Park, Woong-June;Kim, Cheol-Soo;Park, Soon-Ki
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2005.11a
    • /
    • pp.95-105
    • /
    • 2005
  • Transposon-mediated insertional mutagenesis provides one of the most powerful tools for functional studies of genes in higher plants. This project has been performed to develop a large population of insertional mutations, and to construct databases of molecular information on Ds insertion sites in rice. Ultimate goals are to supply genetic materials and information to analyze gene function and to identify and utilize agronomically important genes for breeding purpose. Two strategies have been employed to generate the large scale of transposon population in a Japonica type rice, Dongjin Byeo; 1) genetic crosses between Ac and Ds lines and 2) plant regeneration from seeds carrying Ac and Ds. Our study showed that over 70% of regenerated plants generally carried independent Ds elements and high activity of transposition was detected only during regeneration period. Ds-flanking DNA amplified from leaf tissues of F2 and T1 (or T2) plants have been amplified via TAIL-PCR and directly sequenced. So far, over 65,000 Ds lines have been generated and over 9,500 Ds loci have been mapped on chromosomes by sequence analysis. Database of molecular information on Ds insertion sites has been constructed, and has been opened to the public and will be updated soon at http://www.niab.go.kr. Detailed functional analysis of more than 30 rice mutants has been performed. Several Ds-tagged rice genes that have been selected for functional analysis will be briefly introduced. We expect that a great deal of information and genetic resources of Ds lines would be obtained during the course of this project, which will be shared with domestic and international rice researchers. In addition to the Japonica rice, we have established the tagging system in an rice line of indica genetic background, MGRI079. MGRI079 (Indica/Japonica) was transformed with Agrobacteria carrying Ac and Ds T-DNA vectors. Among transgenic lines, we successfully identified single-copy Ds and Ac lines in MGR1079. These lines were served as ‘starter lines’ to mutagenize Indica genetic background. To achieve rapid, large scale generation of Ds transposant lines, MGR1079 transformants carrying homozygous Ac were crossed with ones with homozygous Ds, and $F_2$seeds were used for plant regeneration. In this year, over 2,000 regeneration plants were grown in the field. We are able to evaluate the tagging efficiency in the Indica genetic background in the fall.

  • PDF

The Exon 2 Deletion of the COMMD1 Causing Copper Toxicosis in Bedlington Terriers in Korea (한국 베들링턴 테리어에서 구리중독증을 유발하는 COMMD1 유전자의 exon 2 결손변이)

  • Kim, Yun-Gi;Kim, So-Yeon;Yun, Young-Min
    • Journal of Veterinary Clinics
    • /
    • v.32 no.1
    • /
    • pp.1-4
    • /
    • 2015
  • This study was performed to survey prevalence of Copper metabolism domain containing 1 (COMMD1) mutation using molecular diagnostic method in a population of Bedlington terriers in Korea. COMMD1 gene (formerly MURR1) functions as a regulator of sodium transport and copper metabolism. The deletion of exon 2 of the COMMD1 gene causes copper toxicosis in Bedlington terriers. Bedlington terriers with this autosomal recessive disorder were shown to have the elevated liver copper levels due to genetic derangement in the biliary copper excretion pathway. DNA samples were extracted from whole blood collected from 257 Bedlington terriers (109 males, 148 females) of pet dog clubs in Korea. A multiplex PCR was carried out to detect of exon 2 deletion of COMMD1 gene. In this study, it was possible to know the existence and prevalence of exon 2 deletion of COMMD1 in Bedlington terriers in Korea. Of the 257 samples, 131 (51%) were wild type homozygous for the normal COMMD1 gene, 108 (42%) were heterozygous, having both normal and mutated copy of the COMMD1 gene. The eighteen (7%) were mutant type homozygous. The results of genetic analysis could help establish proper management strategy and selective breeding program to prevent COMMD1 mutation in Bedlington terriers in Korea.

Pro-(IL-18) and Anti-(IL-10) Inflammatory Promoter Genetic Variants (Intrinsic Factors) with Tobacco Exposure (Extrinsic Factors) May Influence Susceptibility and Severity of Prostate Carcinoma: A Prospective Study

  • Dwivedi, Shailendra;Singh, Sarvesh;Goel, Apul;Khattri, Sanjay;Mandhani, Anil;Sharma, Praveen;Misra, Sanjeev;Pant, Kamlesh Kumar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.8
    • /
    • pp.3173-3181
    • /
    • 2015
  • Background: It has been hypothesized that IL-18 (pro-) and IL-10 (anti-) inflammatory genetic variants at -607 C/A-137G/C and -819C/T,-592C/A, respectively, may generate susceptibility and severity risk with various modes of tobacco exposure in prostate carcinoma (PCa) patients. IL-18 is a pro-inflammatory cytokine expressed on various cells including prostate gland elements, and is a key mediator of immune responses with anti-cancerous properties. IL-10 is an anti-inflammatory cytokine that is associated with tumour malignancy which causes immune escape. Materials and Methods: The present study was conducted with 540 subjects, comprising 269 prostate carcinoma patients and 271 controls. Genotyping was performed by PCR-RFLP and confirmed by real time PCR probe-based methods. Results: The findings indicated that the mutant heterozygous and homozygous genotype CC and GC+CC showed significant negative associations (p=0.01, OR=0.21; 95% CI: 0.08-0.51 and p=0.011, OR=0.43; 95% CI: 0.22-0.81, respectively) thus, less chance to be diagnosed as cancer against GG genotype of tobacco smoking patients. In addition, a heterozygous GC genotype at the same locus of IL-18 pro-inflammatory cytokine may aggravate the severity (OR=2.82; 95%CI 1.09-7.29 :p=001) so that patients are more likely to be diagnosed in advanced stage than with the GG wild homozygous genotype. Our results also illustrated that anti-inflammatory cytokine (IL-10) genetic variants, although showing no significant association with susceptibility to cancer of the prostate, may gave profound effects on severity of the disease, as -819 TC (OR=4.60; 95%CI 1.35-15.73), and -592 AC (OR=5.04; 95%CI 1.08-25.43) of IL-10 in tobacco chewers and combined users (both chewers and smokers) respectively, are associated with diagnosis in more advanced stage than with other variants. Conclusions: We conclude that promoter genetic variants of IL-18 and IL-10 with various modes of tobacco exposure may affect not only susceptibility risk but also severity in prostate cancer.

Associations of Single Nucleotide Polymorphisms in miR-146a, miR-196a, miR-149 and miR-499 with Colorectal Cancer Susceptibility

  • Du, Wei;Ma, Xue-Lei;Zhao, Chong;Liu, Tao;Du, Yu-Liang;Kong, Wei-Qi;Wei, Ben-Ling;Yu, Jia-Yun;Li, Yan-Yan;Huang, Jing-Wen;Li, Zi-Kang;Liu, Lei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.1047-1055
    • /
    • 2014
  • Background: MicroRNAs (miRNAs) are an abundant class of endogenous small non-coding RNAs of 20-25 nucleotides in length that function as negative gene regulators. MiRNAs play roles in most biological processes, as well as diverse human diseases including cancer. Recently, many studies investigated the association between SNPs in miR-146a rs2910164, miR-196a2 rs11614913, miR-149 rs229283, miR-499 rs3746444 and colorectal cancer (CRC), which results have been inconclusive. Methodology/Principal Findings: PubMed, EMBASE, CNKI databases were searched with the last search updated on November 5, 2013. For miR-196a2 rs11614913, a significantly decreased risk of CRC development was observed under three genetic models (dominant model: OR = 0.848, 95%CI: 0.735-0.979, P = 0.025; recessive model: OR = 0.838, 95%CI: 0.721-0.974, P = 0.021; homozygous model: OR = 0.754, 95%CI: 0.627-0.907, P = 0.003). In the subgroup analyses, miR-$196a2^*T$ variant was associated with a significantly decreased susceptibility of CRC (allele model: OR = 0.839, 95%CI: 0.749-0.940, P = 0.000; dominant model: OR = 0.770, 95%CI: 0.653-0.980, P = 0.002; recessive model: OR = 0.802, 95%CI: 0.685-0.939, P = 0.006; homozygous model: OR = 0.695, 95%CI: 0.570-0.847, P = 0.000). As for miR-149 rs2292832, the two genetic models (recessive model: OR = 1.199, 95% CI 1.028-1.398, P = 0.021; heterozygous model: OR = 1.226, 95% CI 1.039-1.447, P = 0.013) demonstrated increased susceptibility to CRC. On subgroup analysis, significantly increased susceptibility of CRC was found in the genetic models (recessive model: OR = 1.180, 95% CI 1.008-1.382, P = 0.040; heterozygous model: OR = 1.202, 95% CI 1.013-1.425, P = 0.013) in the Asian group. Conclusions: These findings supported that the miR-196a2 rs11614913 and miR-149 rs2292832 polymorphisms may contribute to susceptibility to CRC.

Contribution of the MLH1 -93G>A Promoter Polymorphism in Modulating Susceptibility Risk in Malaysian Colorectal Cancer Patients

  • Nizam, Zahary Mohd;Abdul Aziz, Ahmad Aizat;Kaur, Gurjeet;Abu Hassan, Muhammad Radzi;Mohd Sidek, Ahmad Shanwani;Lee, Yeong Yeh;Mazuwin, Maya;Ankathil, Ravindran
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.619-624
    • /
    • 2013
  • Background: Colorectal cancer (CRC) exists in a more common sporadic form and less common hereditary forms, associated with the Lynch syndrome, familial adenomatous polyposis (FAP) and other rare syndromes. Sporadic CRC is believed to arise as a result of close interaction between environmental factors, including dietary and lifestyle habits, and genetic predisposition factors. In contrast, hereditary forms such as those related to the Lynch syndrome result from inheritance of germline mutations of mismatch repair (MMR) genes. However, in certain cases, the influence of low penetrance alleles in familial colorectal cancer susceptibility is also undeniable. Aim: To investigate the genotype frequencies of MLH1 promoter polymorphism -93G>A and to determine whether it could play any role in modulating familial and sporadic CRC susceptibility risk. Methods: A case-control study comprising of 104 histopathologically confirmed CRC patients as cases (52 sporadic CRC and 52 Lynch syndrome patients) and 104 normal healthy individuals as controls was undertaken. DNA was extracted from peripheral blood and the polymorphism was genotyped employing PCR-RFLP methods. The genotypes were categorized into homozygous wild type, heterozygous and homozygous variants. The risk association between these polymorphisms and CRC susceptibility risk was calculated using binary logistic regression analysis and deriving odds ratios (ORs). Results: When risk association was investigated for all CRC patients as a single group, the heterozygous (G/A) genotype showed a significantly higher risk for CRC susceptibility with an OR of 2.273, (95%CI: 1.133-4.558 and p-value=0.021). When analyzed specifically for the 2 types of CRC, the heterozygous (G/A) genotype showed significantly higher risk for sporadic CRC susceptibility with and OR of 3.714, (95%CI: 1.416-9.740 and p-value=0.008). Despite high OR value was observed for Lynch syndrome (OR: 1.600, 95%CI: 0.715-3.581), the risk was not statistically significant (P=0.253). Conclusion: Our results suggest an influence of MLH1 promoter polymorphism -93G>A in modulating susceptibility risk in Malaysian CRC patients, especially those with sporadic disease.

Primer for the Potato Specific Internal Control DNA and Screening Method for the Genetically Modified Potatoes by Competitive Duplex-PCR (감자 특이 Internal Control DNA 증폭용 Primer와 이를 이용한 유전자 변형 감자의 경쟁적 이중 PCR 검정법)

  • Seo, Hyo-Won;Yi, Jung-Yoon;Cho, Hyun-Mook;Kim, Sung-Yeul
    • Journal of Plant Biotechnology
    • /
    • v.29 no.4
    • /
    • pp.235-240
    • /
    • 2002
  • We report the new method for the screening of genetically modified potato by competitive duplex-PCR using the potato specific single oligomer primer for the internal control and CaMV 35S promoter or NOS terminator specific primers. The single oligomer primer (rAGU4A) amplify the potato specific internal control band from the homozygous potato genomic DNA in the RAPD profiles of all analyzed potato varieties. The 530 bp internal control DNA was amplified independently to CaMV 35S promoter or NOS terminator DNA and identified as repetitive or microsatellite DNA of potato (AF541972). With this new technique, the transgenic potatoes which were transformed with vectors contained the different foreign genes are analyzed. In case of the commercialized transgenic potato varieties, 'Hew Leafs', those two genetic factors are used for promoter and terminator respectively So, this new PCR technique should be a promising method of cost effective and accurate screening for the commercialized GM potatoes on market.

Double Mutations in eIF4E and eIFiso4E Confer Recessive Resistance to Chilli Veinal Mottle Virus in Pepper

  • Hwang, JeeNa;Li, Jinjie;Liu, Wing-Yee;An, Song-Ji;Cho, Hwajin;Her, Nam Han;Yeam, Inhwa;Kim, Dosun;Kang, Byoung-Cheorl
    • Molecules and Cells
    • /
    • v.27 no.3
    • /
    • pp.329-336
    • /
    • 2009
  • To evaluate the involvement of translation initiation factors eIF4E and eIFiso4E in Chilli veinal mottle virus (ChiVMV) infection in pepper, we conducted a genetic analysis using a segregating population derived from a cross between Capsicum annuum 'Dempsey' containing an elF4E mutation ($pvr1^2$) and C. annuum 'Perennial' containing an elFiso4E mutation (pvr6). C. annuum 'Dempsey' was susceptible and C. annuum 'Perennial' was resistant to ChiVMV. All $F_1$ plants showed resistance, and $F_2$ individuals segregated in a resistant-susceptible ratio of 166:21, indicating that many resistance loci were involved. Seventy-five $F_2$ and 329 $F_3$ plants of 17 families were genotyped with $pvr1^2$ and pvr6 allele-specific markers, and the genotype data were compared with observed resistance to viral infection. All plants containing homozygous genotypes of both $pvr1^2$ and pvr6 were resistant to ChiVMV, demonstrating that simultaneous mutations in elF4E and eIFiso4E confer resistance to ChiVMV in pepper. Genotype analysis of $F_2$ plants revealed that all plants containing homozygous genotypes of both $pvr1^2$ and pvr6 showed resistance to ChiVMV. In protein-protein interaction experiments, ChiVMV viral genome-linked protein (VPg) interacted with both eIF4E and eIFiso4E. Silencing of elF4E and eIFiso4E in the VIGS experiment showed reduction in ChiVMV accumulation. These results demonstrated that ChiVMV can use both eIF4E and eIFiso4E for replication, making simultaneous mutations in eIF4E and eIFiso4E necessary to prevent ChiVMV infection in pepper.

Improvement of Forage Crop Yield and Retardation of Leaf Senescence by Introduction of Gene for Cytokinin Synthetase into Plants (Cytokinin 합성효소의 도입에 따른 형질전환 식물체의 노화 지연 및 수량의 증가)

  • Lee, B.H.;Won, S.H.;Lee, H.S.;Kim, K.Y.;Kim, M.H.;Eun, S.J.;Jo, J.
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.19 no.3
    • /
    • pp.281-290
    • /
    • 1999
  • The bacterial isopentenyl transferase (ipt) gene involved in cytokinin biosynthesis was fused with 35S promoter of cauliflower mosaic virus (CaMV) and introduced into tobacco plants (Nicotiana tabacum L. cv. Samsun) via Agrobacterium-mediated transformation. As expected, ipt gene was constitutively expressed in all tissues of transgenic plants. Several primary transgenic plants were obtained that expressed different level of transcripts for ipt gene. Three of transgenic plants with different expression level of ipt gene were selected and selfed to obtain homozygous line for further analysis. A number of interesting phenotypic changes such as viviparous leaves, delayed senescence, larger axillary shoots, an abundance of tiny shoots at the apex and a release of lateral buds, were observed in transgenic plants. Chlorophyll content was 1.5- t.o 4-fold higher in transgenic plants as compared with non-transformed plants. These results indicate that the cytokinin synthesized in transgenic plants could improve forage crop yield by delay of leaf senescence and increase of leaf number.

  • PDF