• 제목/요약/키워드: homotopy equivalence.

검색결과 26건 처리시간 0.017초

DERIVED CROSSED MODULES

  • Sahan, Tuncar
    • Korean Journal of Mathematics
    • /
    • 제26권3호
    • /
    • pp.439-458
    • /
    • 2018
  • In this study, we interpret the notion of homotopy of morphisms in the category of crossed modules in a category C of groups with operations using the categorical equivalence between the categories of crossed modules and of internal categories in C. Further, we characterize the derivations of crossed modules in a category C and obtain new crossed modules using regular derivations of old one.

ON THE DIRECT LIMIT OF THE LOCALLY NILPOTENT DIRECT SYSTEM

  • HAN, SANG-EON
    • 호남수학학술지
    • /
    • 제19권1호
    • /
    • pp.139-144
    • /
    • 1997
  • In this paper, we make some results on the direct limit of the locally nilpotent direct system. We study the ($T^{**}$) - properties of the above direct limit and homotopy equivalence of the direct limits.

  • PDF

HOMOTOPY PROPERTIES OF map(ΣnℂP2, Sm)

  • Lee, Jin-ho
    • 대한수학회지
    • /
    • 제58권3호
    • /
    • pp.761-790
    • /
    • 2021
  • For given spaces X and Y, let map(X, Y) and map*(X, Y) be the unbased and based mapping spaces from X to Y, equipped with compact-open topology respectively. Then let map(X, Y ; f) and map*(X, Y ; g) be the path component of map(X, Y) containing f and map*(X, Y) containing g, respectively. In this paper, we compute cohomotopy groups of suspended complex plane πn+mnℂP2) for m = 6, 7. Using these results, we classify path components of the spaces map(ΣnℂP2, Sm) up to homotopy equivalence. We also determine the generalized Gottlieb groups Gn(ℂP2, Sm). Finally, we compute homotopy groups of mapping spaces map(ΣnℂP2, Sm; f) for all generators [f] of [ΣnℂP2, Sm], and Gottlieb groups of mapping components containing constant map map(ΣnℂP2, Sm; *).

CO-CLUSTER HOMOTOPY QUEUING MODEL IN NONLINEAR ALGEBRAIC TOPOLOGICAL STRUCTURE FOR IMPROVING POISON DISTRIBUTION NETWORK COMMUNICATION

  • V. RAJESWARI;T. NITHIYA
    • Journal of applied mathematics & informatics
    • /
    • 제41권4호
    • /
    • pp.861-868
    • /
    • 2023
  • Nonlinear network creates complex homotopy structural communication in wireless network medium because of complex distribution approach. Due to this multicast topological connection structure, the queuing probability was non regular principles to create routing structures. To resolve this problem, we propose a Co-cluster homotopy queuing model (Co-CHQT) for Nonlinear Algebraic Topological Structure (NLTS-) for improving poison distribution network communication. Initially this collects the routing propagation based on Nonlinear Distance Theory (NLDT) to estimate the nearest neighbor network nodes undernon linear at x(a,b)→ax2+bx2 = c. Then Quillen Network Decomposition Theorem (QNDT) was applied to sustain the non-regular routing propagation to create cluster path. Each cluster be form with co variance structure based on Two unicast 2(n+1)-Z2(n+1)-Z network. Based on the poison distribution theory X(a,b) ≠ µ(C), at number of distribution routing strategies weights are estimated based on node response rate. Deriving shorte;'l/st path from behavioral of the node response, Hilbert -Krylov subspace clustering estimates the Cluster Head (CH) to the routing head. This solves the approximation routing strategy from the nonlinear communication depending on Max- equivalence theory (Max-T). This proposed system improves communication to construction topological cluster based on optimized level to produce better performance in distance theory, throughput latency in non-variation delay tolerant.

RELATIVE SELF-CLOSENESS NUMBERS

  • Yamaguchi, Toshihiro
    • 대한수학회보
    • /
    • 제58권2호
    • /
    • pp.445-449
    • /
    • 2021
  • We define the relative self-closeness number N��(g) of a map g : X → Y, which is a generalization of the self-closeness number N��(X) of a connected CW complex X defined by Choi and Lee [1]. Then we compare N��(p) with N��(X) for a fibration $X{\rightarrow}E{\rightarrow\limits^p}Y$. Furthermore we obtain its rationalized result.

ON THE HOMOLOGY OF THE MODULI SPACE OF $G_2$ INSTANTONS

  • Park, Young-Gi
    • 대한수학회논문집
    • /
    • 제9권4호
    • /
    • pp.933-944
    • /
    • 1994
  • Let $\pi : P \to S^4$ be a principal G-bundle over $S^4$ whose the structure group G is a compact, connected, simple Lie group. Since $\pi_3(G) = \pi_4 (BG) = Z$, we can classify the principal bundle $P_k$ over $S^4$ by the map $S^4 \to BG$ of degree k. Atiyah and Jones [2] showed that $C_k = A_k/g^b_k$ is homotopy equivalent to $\Omega^3_k G \simeq \Omega^4_k BG$ where $A_k$ is the space of the all connections in $P_k$ and $g^b_k$ is the based gauge group which consists of all base point preserving automorphisms on $P_k$. Here $\Omega^nX$ is the space of all base-point preserving continuous map from $S^n$ to X. Let $M_k$ be the space of based gauge equivalence classes of all connections in $P_k$ satisfying the Yang-Mills self-duality equations, which we call the moduli space of G instantons.

  • PDF