• Title/Summary/Keyword: homologous expression

Search Result 287, Processing Time 0.025 seconds

Elevated expression of exogenous RAD51 enhances the CRISPR/Cas9-mediated genome editing efficiency

  • Seo Jung Park;Seobin Yoon;Eui-Hwan Choi;Hana Hyeon;Kangseok Lee;Keun Pil Kim
    • BMB Reports
    • /
    • v.56 no.2
    • /
    • pp.102-107
    • /
    • 2023
  • Genome editing using CRISPR-associated technology is widely used to modify the genomes rapidly and efficiently on specific DNA double-strand breaks (DSBs) induced by Cas9 endonuclease. However, despite swift advance in Cas9 engineering, structural basis of Cas9-recognition and cleavage complex remains unclear. Proper assembly of this complex correlates to effective Cas9 activity, leading to high efficacy of genome editing events. Here, we develop a CRISPR/Cas9-RAD51 plasmid constitutively expressing RAD51, which can bind to single-stranded DNA for DSB repair. We show that the efficiency of CRISPR-mediated genome editing can be significantly improved by expressing RAD51, responsible for DSB repair via homologous recombination (HR), in both gene knock-out and knock-in processes. In cells with CRISPR/Cas9-RAD51 plasmid, expression of the target genes (cohesin SMC3 and GAPDH) was reduced by more than 1.9-fold compared to the CRISPR/Cas9 plasmid for knock-out of genes. Furthermore, CRISPR/Cas9-RAD51 enhanced the knock-in efficiency of DsRed donor DNA. Thus, the CRISPR/Cas9-RAD51 system is useful for applications requiring precise and efficient genome edits not accessible to HR-deficient cell genome editing and for developing CRISPR/Cas9-mediated knockout technology.

Transient Expression of Homologous Hairpin RNA Interferes with Broad bean wilt virus 2 Infection in Nicotiana benthamiana

  • Yoon, Ju-Yeon;Ryu, Ki Hyun;Choi, Seung-Kook;Choi, Gug Sun;Kwon, Soon Bae;Park, Jin Woo;Palukaitis, Peter
    • Research in Plant Disease
    • /
    • v.18 no.4
    • /
    • pp.268-276
    • /
    • 2012
  • Broad bean wilt virus 2 (BBWV2), genus Fabavirus, subfamily Comovirinae, family Secoviridae, causes damage in many economically important horticultural and ornamental crops. Sequence alignments showed several conserved sequences in 5' non-coding regions (5' NCRs) of RNA 1 and RNA 2 in all BBWV2 strains characterized so far. Based on this observation, we generated a hpRNA construct (pIR-BBWV2) harboring an inverted repeat containing a 210 bp cDNA fragment homologous to 5' NCR portion of BBWV2 RNA 1 to investigate the silencing potential for its ability to interfere with a rapidly replicating BBWV2. Agrobacterium-mediated transient expression of the IR-BBWV2 had a detrimental effect on BBWV2 infection, showing no distinct symptoms in non-inoculated leaves of the agroinfiltrated Nicotiana benthamiana plants. BBWV2 genomic RNAs were not detected by RT-PCR from tissues of both the inoculated leaves and upper leaves of the agroinfiltrated plants. Accumulation of virus-derived small interfering RNAs was detected in the inoculated leaf tissues of N. benthamiana plants elicited by transient expression of IR-BBWV2 indicating that RNA silencing is responsible for the resistance to BBWV2.

NELL2 Function in the Protection of Cells against Endoplasmic Reticulum Stress

  • Kim, Dong Yeol;Kim, Han Rae;Kim, Kwang Kon;Park, Jeong Woo;Lee, Byung Ju
    • Molecules and Cells
    • /
    • v.38 no.2
    • /
    • pp.145-150
    • /
    • 2015
  • Continuous intra- and extracellular stresses induce disorder of $Ca^{2+}$ homeostasis and accumulation of unfolded protein in the endoplasmic reticulum (ER), which results in ER stress. Severe long-term ER stress triggers apoptosis signaling pathways, resulting in cell death. Neural epidermal growth factor-like like protein 2 (NELL2) has been reported to be important in protection of cells from cell death-inducing environments. In this study, we investigated the cytoprotective effect of NELL2 in the context of ER stress induced by thapsigargin, a strong ER stress inducer, in Cos7 cells. Overexpression of NELL2 prevented ER stress-mediated apoptosis by decreasing expression of ER stress-induced C/EBP homologous protein (CHOP) and increasing ER chaperones. In this context, expression of anti-apoptotic Bcl-xL was increased by NELL2, whereas NELL2 decreased expression of pro-apoptotic proteins, such as cleaved caspases 3 and 7. This anti-apoptotic effect of NELL2 is likely mediated by extracellular signal-regulated kinase (ERK) signaling, because its inhibitor, U0126, inhibited effects of NELL2 on the expression of anti- and pro-apoptotic proteins and on the protection from ER stress-induced cell death.

Knock-in Efficiency Depending on Homologous Arm Structure of the Knock-in Vector in the Bovine Fibroblasts (체세포에 있어서 Knock-in 벡터 상동영역 구조에 따른 Knock-in 효율)

  • Kim, Se Eun;Park, Da Som;Koo, Deog-Bon;Kang, Man-Jong
    • Reproductive and Developmental Biology
    • /
    • v.41 no.1
    • /
    • pp.7-16
    • /
    • 2017
  • The knock-in efficiency in the fibroblast is very important to produce transgenic domestic animal using nuclear transfer. In this research, we constructed three kinds of different knock-in vectors to study the efficiency of knock-in depending on structure of knock-in vector with different size of homologous arm on the ${\beta}-casein$ gene locus in the somatic cells; DT-A_cEndo Knock-in vector, DT-A_tEndo Knock-in vector I, and DT-A_tEndo Knock-in vector II. The knock-in vector consists of 4.8 kb or 1.06 kb of 5' arm region and 1.8 kb or 0.64 kb of 3' arm region, and neomycin resistance gene(neor) as a positive selection marker gene. The cEndo Knock-in vector had 4.8 kb and 1.8 kb homologous arm. The tEndo Knock-in vector I had 1.06 kb and 0.64 kb homologous arm and tEndo Knock-in vector II had 1.06 kb and 1.8 kb homologous arm. To express endostatin gene as transgene, the F2A sequence was fused to the 5' terminal of endostatin gene and inserted into exon 7 of the ${\beta}-casein$ gene. The knock-in vector and TALEN were introduced into the bovine fibroblast by electroporation. The knock-in efficiencies of cEndo, tEndo I, and tEndo II vector were 4.6%, 2.2% and 4.8%, respectively. These results indicated that size of 3' arm in the knock-in vector is important for TALEN-mediated homologous recombination in the fibroblast. In conclusion, our knock-in system may help to create transgenic dairy cattle expressing human endostatin protein via the endogenous expression system of the bovine ${\beta}-casein$ gene in the mammary gland.

Analysis of Genomic Structure of an Aflatoxin Biosynthesis Homologous Gene Cluster in Aspergillus oryzae RIB Strains

  • Lee, Yun-Hae;Tominaga, Mihoko;Hayashi, Risa;Sakamoto, Kazutoshi;Yamada, Osamu;Akita, Osamu
    • 한국균학회소식:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.32-44
    • /
    • 2006
  • To investigate non-aflatoxin-production of A. oryzae at the molecular level, an aflatoxin biosynthesis gene homolog cluster of RIB 40 was analyzed. Although most genes in the corresponding cluster exhibited from 97 to 99 % similarity to those of Aspergillus flavus, three genes shared 93 % similarity or less. In addition, although slight expression of aflR, positive transcriptional regulator gene, was detected in some A. oryzae strains having seven aflatoxin biosynthesis homologous genes, other genes related to aflatoxin production were not detected. RIB strains were mainly divided into group 1, having seven aflatoxin biosynthesis homologous genes (aflT, nor-i, aflR, norA, avnA, verB, and vbs), and group 2, having three homologous (avnA, verB, and vbs). Partial aflatoxin homologous gene cluster of RIB62 from group 2 was sequenced and compared with that of RIB40 from group 1. RIB62 showed a large deletion upstream of ver-1 with more than half of the aflatoxin homologous gene cluster missing including aflR, a positive transcriptional regulatory gene. Adjacent to the deletion of the aflatoxin homologous gene cluster, RIB62 has a unique sequence of about 8kb and a telomere. Southern analysis of A. oryzae RIB strains with four kinds of probe derived from the unique sequence of RIB62 showed that all group 2 strains have identical hybridizing signals. Polymerase chain reaction with specific primer set designed to amplify the junction between ver-1 and the unique sequence of RIB62 resulted in the same size of DNA fragment only from group 2 strains. Based on these results, we developed a useful genetic tool that distinguishes A. oryzae group 2 strains from the other groups' strains and propose that it might have differentiated from the ancestral strains due to chromosomal breakage.

  • PDF

Roles of Budding Yeast Hrr25 in Recombination and Sporulation

  • Lee, Min-Su;Joo, Jeong Hwan;Kim, Keunpil
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.6
    • /
    • pp.1198-1203
    • /
    • 2017
  • Hrr25, a casein kinase $1{\delta}/{\varepsilon}$ homolog in budding yeast, is essential to set up mono-orientation of sister kinetochores during meiosis. Hrr25 kinase activity coordinates sister chromatid cohesion via cohesin phosphorylation. Here, we investigated the prophase role of Hrr25 using the auxin-inducible degron system and by ectopic expression of Hrr25 during yeast meiosis. Hrr25 mediates nuclear division in meiosis I but does not affect DNA replication. We also found that initiation of meiotic double-strand breaks as well as joint molecule formation were normal in HRR25-deficient cells. Thus, Hrr25 is essential for termination of meiotic division but not homologous recombination.

WAVEs: A Novel and Promising Weapon in the Cancer Therapy Tool Box

  • Sakthivel, K.M.;Prabhu, V. Vinod;Guruvayoorappan, C.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.1719-1722
    • /
    • 2012
  • The Wiskott-Aldrich Syndrome Protein family Verprolin - homologous proteins (WAVEs), encoded by a metastasis promoter gene, play considerable roles in adhesion of immune cells, cell proliferation, migration and destruction of foreign agents by reactive oxygen species. These diverse functions have lead to the hypothesis that WAVE proteins have multi-functional roles in regulating cancer invasiveness, metastasis, development of tumor vasculature and angiogenesis. Differentials in expression of WAVE proteins are associated with a number of neoplasms include colorectal cancer, hepatocellular cancer, lung squamous cell carcinoma, human breast adenocarcinoma and prostate cancer. In this review we attempt to unify our knowledge regarding WAVE proteins, focusing on their potentials as diagnostic markers and molecular targets for cancer therapy.

Identification of hrcC, hrpF, and maA Genes of Xanthomonas campestris pv. glycines 8ra: Roles in Pathogenicity and Inducing Hypersensitive Response on Nonhost Plants

  • Park, Byoung-Keun;Ingyu Hwang
    • The Plant Pathology Journal
    • /
    • v.15 no.1
    • /
    • pp.21-27
    • /
    • 1999
  • Nonpathogenic mutants of Xanthomonas campestris pv. glycines were generated with Omegon-Kim to isolate genes essential for pathogenicity and inducing hypersensitive response (HR). Three nonpathogenic multants and two mutants showing slow symptom development were isolated among 1,000 colonies tested. From two nonpathogenic mutants, 8-13 and 26-13, genes homologous to hrcC and hrpF of X. campestris pv. vesicatoria were identified. The nonpathogenic mutant 8-13 had a mutation in a gene homologous to hrpF of X. campestris pv. vesicatoria and failed to cause HR on pepper plants but still induced HR on tomato leaves. The nonpathogenic mutant 26-13 had an insertional mutation in a gene homologous to hrcC of X. campestris pv. vesicatoria and lost the ability to induce HR on pepper leaves but still caused HR on tomato plants. Unlike other phytopathogenic bacteria, the parent strain and these two mutants of X. campestris pv. glycines did not cause HR on tobacco plants. a cosmid clone, pBL1, that complemented the phenotypes of 8-13 was isolated. From the analysis of restriction enzyme mapping and deletion analyses of pBL1, a 9.0-kb Eco RI fragment restored the phenotypes of 8-13. pBL1 failed to complement the phenotypes of 26-13, indicating that the hrcC gene resides outside of the insert DNA of pBL1. One nonpathogenic mutant, 13-33, had a mutation in a gene homologous to a miaA gene encoding tRNA delta (2)-isopentenylpyrophosphate transferase of Escherichia coli. This indicated that tRNA modifications in X. campestris pv. glycines may be required for expression of genes necessary for pathogenicity. The mutant 13-33 multiplied as well as the parent strain did in the culture medium and in planta, indicating that loss of pathogenicity is not due to the inability of multiplication in vivo.

  • PDF

A New Bicistronic Fragmentation Vector for Manipulation and Analysis of Functional Yeast Artificial Chromosomes (YACs) (Yeast Artificial Chromosome의 효율적인 조작과 분석을 위한 새로운 Bicistronic Fragmentation Vector의 개발에 관한 연구)

  • 임향숙;최주연;김인경;강성만;성영모
    • Korean Journal of Microbiology
    • /
    • v.35 no.1
    • /
    • pp.28-34
    • /
    • 1999
  • Fragmentation vectors are used to analyze function and genomic structure of a gene of interest by creating deletion derivatives of large fragments of genomic DNA cloned as yeast artificial chromosomes (YACs). Herein, we developed a new hicistronic fragmentation vector that contains internal ribosomal entry sile (IRES) of encephalomyocarditis vin~s (EMCV) and $\beta$-galactosidase as a reporter gene. This vector system provides a novcl loo1 to analyze expression patterns of a gene of interest due to simultaneous expression of a target gene as well as $\beta$-galactosidase driven from a single message. In addition, the bicistronic fragmentation vector contains four rare-cutting restriction enzyme sites in the polycloning sites which can be used to conveniently insert any kinds of genes and therefore facilitates targeting DNA scgments into YAC by means of homologous recombination. This approach establishes a paradigm for manipulation of mammalian DNA segments and characterization of expression and regulatory regions of mammalian gene cloned as YAC.

  • PDF