DOI QR코드

DOI QR Code

NELL2 Function in the Protection of Cells against Endoplasmic Reticulum Stress

  • Kim, Dong Yeol (Department of Biological Sciences, College of Natural Sciences, University of Ulsan) ;
  • Kim, Han Rae (Department of Biological Sciences, College of Natural Sciences, University of Ulsan) ;
  • Kim, Kwang Kon (Department of Biological Sciences, College of Natural Sciences, University of Ulsan) ;
  • Park, Jeong Woo (Department of Biological Sciences, College of Natural Sciences, University of Ulsan) ;
  • Lee, Byung Ju (Department of Biological Sciences, College of Natural Sciences, University of Ulsan)
  • Received : 2014.07.28
  • Accepted : 2014.11.12
  • Published : 2015.02.28

Abstract

Continuous intra- and extracellular stresses induce disorder of $Ca^{2+}$ homeostasis and accumulation of unfolded protein in the endoplasmic reticulum (ER), which results in ER stress. Severe long-term ER stress triggers apoptosis signaling pathways, resulting in cell death. Neural epidermal growth factor-like like protein 2 (NELL2) has been reported to be important in protection of cells from cell death-inducing environments. In this study, we investigated the cytoprotective effect of NELL2 in the context of ER stress induced by thapsigargin, a strong ER stress inducer, in Cos7 cells. Overexpression of NELL2 prevented ER stress-mediated apoptosis by decreasing expression of ER stress-induced C/EBP homologous protein (CHOP) and increasing ER chaperones. In this context, expression of anti-apoptotic Bcl-xL was increased by NELL2, whereas NELL2 decreased expression of pro-apoptotic proteins, such as cleaved caspases 3 and 7. This anti-apoptotic effect of NELL2 is likely mediated by extracellular signal-regulated kinase (ERK) signaling, because its inhibitor, U0126, inhibited effects of NELL2 on the expression of anti- and pro-apoptotic proteins and on the protection from ER stress-induced cell death.

Keywords

References

  1. Aihara, K., Kuroda, S., Kanayama, N., Matsuyama, S., Tanizawa, K., and Horie, M. (2003). A neuron-specific EGF family protein, NELL2, promotes survival of neurons through mitogen-activated protein kinases. Mol. Brain Res. 116, 86-93. https://doi.org/10.1016/S0169-328X(03)00256-0
  2. Allan, L.A., Morrice, N., Brady, S., Magee, G., Pathak, S., and Clarke, P.R. (2003). Inhibition of caspase-9 through phosphorylation at Thr 125 by ERK MAPK. Nat. Cell. Biol. 5, 647-654. https://doi.org/10.1038/ncb1005
  3. Behl, C., Widmann, M., Trapp, T., and Holsboer, F. (1995). 17-beta estradiol protects neurons from oxidative stress-induced cell death in vitro. Biochem. Biophys. Res. Commun. 216, 473-482. https://doi.org/10.1006/bbrc.1995.2647
  4. Boucher, M.J., Morisset, J., Vachon, P.H., Reed, J.C., Laine, J., and Rivard, N. (2000). MEK/ERK signaling pathway regulates the expression of Bcl-2, Bcl-X(L), and Mcl-1 and promotes survival of human pancreatic cancer cells. J. Cell. Biochem. 79, 355-369. https://doi.org/10.1002/1097-4644(20001201)79:3<355::AID-JCB20>3.0.CO;2-0
  5. Boulares, A.H., Yakovlev, A.G., Ivanova, V., Stoica, B.A., Wang, G., Iyer, S., and Smulson, M. (1999). Role of poly(ADP-ribose) polymerase (PARP) cleavage in apoptosis. Caspase 3-resistant PARP mutant increases rates of apoptosis in transfected cells. J. Biol. Chem. 274, 22932-22940. https://doi.org/10.1074/jbc.274.33.22932
  6. Boyce, M., and Yuan, J. (2006). Cellular response to endoplasmic reticulum stress: a matter of life or death. Cell Death Differ. 13, 363-373. https://doi.org/10.1038/sj.cdd.4401817
  7. Breckenridge, D.G., Germain, M., Mathai, J.P., Nguyen, M., and Shore, G.C. (2003). Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene 22, 8608-8618. https://doi.org/10.1038/sj.onc.1207108
  8. Choi, E.J., Kim, D.H., Kim, J.G., Kim, D.Y., Kim, J.D., Seol, O.J., Jeong, C.S., Park, J.W., Choi, M.Y., Kang, S.G., et al. (2010). Estrogen-dependent transcription of the NEL-like 2 (NELL2) gene and its role in protection from cell death. J. Biol. Chem. 285, 25074-25084. https://doi.org/10.1074/jbc.M110.100545
  9. Hu, P., Han, Z., Couvillon, A.D., and Exton, J.H. (2004). Critical role of endogenous Akt/IAPs and MEK1/ERK pathways in counteracting endoplasmic reticulum stress-induced cell death. J. Biol. Chem. 279, 49420-49429. https://doi.org/10.1074/jbc.M407700200
  10. Hung, C.C., Ichimura, T., Stevens, J.L., and Bonventre, J.V. (2003). Protection of renal epithelial cells against oxidative injury by endoplasmic reticulum stress preconditioning is mediated by ERK1/2 activation. J. Biol. Chem. 278, 29317-29326. https://doi.org/10.1074/jbc.M302368200
  11. Jeong, J.K., Ryu, B.J., Choi, J., Kim, D.H., Choi, E.J., Park, J.W., Park, J.J., and Lee, B.J. (2008). NELL2 participates in formation of the sexually dimorphic nucleus of the pre-optic area in rats. J. Neurochem. 106, 1604-1613. https://doi.org/10.1111/j.1471-4159.2008.05505.x
  12. Jing, G., Wang, J.J., and Zhang, S.X. (2012). ER stress and apoptosis: a new mechanism for retinal cell death. Exp. Diabetes Res. 2012, 589589.
  13. Johnson, G.G., White, M.C., and Grimaldi, M. (2011). Stressed to death: targeting endoplasmic reticulum stress response induced apoptosis in gliomas. Curr. Pharm. Des. 17, 284-292. https://doi.org/10.2174/138161211795049660
  14. Kadowaki, H., Nishitoh, H., and Ichijo, H. (2004). Survival and apoptosis signals in ER stress: the role of protein kinases. J. Chem. Neuroanat. 28, 93-100. https://doi.org/10.1016/j.jchemneu.2004.05.004
  15. Kass, G.E., and Orrenius, S. (1999). Calcium signaling and cytotoxicity. Environ. Health Perspect. 107, 25-35. https://doi.org/10.1289/ehp.99107s125
  16. Kaufman, R.J. (1999). Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev. 13, 1211-1233. https://doi.org/10.1101/gad.13.10.1211
  17. Kaufman, R.J., and Malhotra, J.D. (2014). Calcium trafficking integrates endoplasmic reticulum function with mitochondrial bioenergetics. Biochim. Biophys. Acta 1843, 2233-2239. https://doi.org/10.1016/j.bbamcr.2014.03.022
  18. Kim, H., Ha, C.M., Choi, J., Choi, E.J., Jeon, J., Kim, C., Park, S.K., Kang, S.S., Kim, K., and Lee, B.J. (2002). Ontogeny and the possible function of a novel epidermal growth factor like repeat domain-containing protein, NELL2, in the rat brain. J. Neurochem. 83, 1389-1400. https://doi.org/10.1046/j.1471-4159.2002.01245.x
  19. Kim, R., Emi, M., Tanabe, K., and Murakami, S. (2006). Role of the unfolded protein response in cell death. Apoptosis 11, 5-13. https://doi.org/10.1007/s10495-005-3088-0
  20. Kim, D.H., Kim, H.R., Choi, E.J., Kim, D.Y., Kim, K.K., Kim, B.S., Park, J.W., and Lee, B.J. (2014). Neural epidermal growth factor- like like protein 2 (NELL2) promotes aggregation of embryonic carcinoma P19 cells by inducing N-cadherin expression. PLoS One 9, e85898. https://doi.org/10.1371/journal.pone.0085898
  21. Kuroda, S., and Tanizawa, K. (1999). Involvement of epidermal growth factor-like domain of NELL proteins in the novel proteinprotein interaction with protein kinase C. Biochem. Biophys. Res. Commun. 265, 752-757. https://doi.org/10.1006/bbrc.1999.1753
  22. Kuroda, S., Oyasu, M., Kawakami, M., Kanayama, N., Tanizawa, K., Saito, N., Abe, T., Matsuhashi, S., and Ting, K. (1999). Biochemical characterization and expression analysis of neural thrombospondin-1-like proteins NELL1 and NELL2. Biochem. Biophys. Res. Commun. 265, 151-160. https://doi.org/10.1006/bbrc.1999.1407
  23. Lee, W.K., Chakraborty, P.K., Roussa, E., Wolff, N.A., and Thevenod, F. (2012). ERK1/2-dependent bestrophin-3 expression prevents ER-stress-induced cell death in renal epithelial cells by reducing CHOP. Biochim. Biophys. Acta 1823, 1864-1876. https://doi.org/10.1016/j.bbamcr.2012.06.003
  24. Lu, Z., and Xu, S. (2006). ERK1/2 MAP kinases in cell survival and apoptosis. IUBMB Life 58, 621-631. https://doi.org/10.1080/15216540600957438
  25. Malanga, M., and Althaus, F.R. (2005). The role of poly(ADPribose) in the DNA damage signaling network. Biochem. Cell Biol. 83, 354-364. https://doi.org/10.1139/o05-038
  26. Mangerich, A., and Burkle, A. (2011). How to kill tumor cells with inhibitors of poly(ADP-ribosyl)ation. Int. J. Cancer 128, 251-265. https://doi.org/10.1002/ijc.25683
  27. Marciniak, S.J., Yun, C.Y., Oyadomari, S., Novoa, I., Zhang, Y., Jungreis, R., Nagata, K., Harding, H.P., and Ron, D. (2004). CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev. 18, 3066-3077. https://doi.org/10.1101/gad.1250704
  28. McCullough, K.D., Martindale, J.L., Klotz, L.O., Aw, T.Y., and Holbrook, N.J. (2001). Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol. Cell. Biol. 21, 1249-1259. https://doi.org/10.1128/MCB.21.4.1249-1259.2001
  29. Meley, D., Spiller, D.G., White, M.R., McDowell, H., Pizer, B., and See, V. (2010). p53-mediated delayed $NF-{\kappa}B$ activity enhances etoposide-induced cell death in medulloblastoma. Cell Death Dis. 1, e41. https://doi.org/10.1038/cddis.2010.16
  30. Munemasa, Y., Chang, C.S., Kwong, J.M., Kyung, H., Kitaoka, Y., Caprioli, J., and Piri, N. (2012). The neuronal EGF-related gene Nell2 interacts with Macf1 and supports survival of retinal ganglion cells after optic nerve injury. PLoS One 7, e34810. https://doi.org/10.1371/journal.pone.0034810
  31. Nelson, B.R., Matsuhashi, S., and Lefcort, F. (2002). Restricted neural epidermal growth factor-like like 2 (NELL2) expression during muscle and neuronal differentiation. Mech. Dev. 119(Suppl 1), S11-19. https://doi.org/10.1016/S0925-4773(03)00084-4
  32. Oyasu, M., Kuroda, S., Nakashita, M., Fujimiya, M., Kikkawa, U., and Saito, N. (2000). Immunocytochemical localization of a neuronspecific thrombospondin-1-like protein, NELL2: light and electron microscopic studies in the rat brain. Mol. Brain Res. 76, 151-160. https://doi.org/10.1016/S0169-328X(99)00342-3
  33. Puthalakath, H., O'Reilly, L.A., Gunn, P., Lee, L., Kelly, P.N., Huntington, N.D., Hughes, P.D., Michalak, E.M., McKimm-Breschkin, J., and Motoyama, N. (2007). ER stress triggers apoptosis by activating BH3-only protein Bim. Cell 129, 1337-1349. https://doi.org/10.1016/j.cell.2007.04.027
  34. Rao, Z., Handford, P., Mayhew, M., Knott, V., Brownlee, G.G., and Stuart, D. (1995). The structure of a $Ca^{2+}$-binding epidermal growth factor-like domain: its role in protein-protein interactions. Cell 82, 131-141. https://doi.org/10.1016/0092-8674(95)90059-4
  35. Rao, R.V., Ellerby, H.M., and Bredesen, D.E. (2004). Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ. 11, 372-380. https://doi.org/10.1038/sj.cdd.4401378
  36. Sano, R., and Reed, J.C. (2013). ER stress-induced cell death mechanisms. Biochim. Biophys. Acta 1833, 3460-3470. https://doi.org/10.1016/j.bbamcr.2013.06.028
  37. Schroder, M., and Kaufman, R.J. (2005). The mammalian unfolded protein response. Annu. Rev. Biochem. 74, 739-789. https://doi.org/10.1146/annurev.biochem.73.011303.074134
  38. Szegezdi, E., Logue, S.E., Gorman, A.M., and Samali, A. (2006). Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep. 7, 880-885. https://doi.org/10.1038/sj.embor.7400779
  39. Tay, K.H., Luan, Q., Croft, A., Jiang, C.C., Jin, L., Zhang, X.D., and Tseng, H.Y. (2014). Sustained IRE1 and ATF6 signaling is important for survival of melanoma cells undergoing ER stress. Cell. Signal. 26, 287-294. https://doi.org/10.1016/j.cellsig.2013.11.008
  40. Tian, T., Zhao, Y., Nakajima, S., Huang, T., Yao, J., Paton, A.W., Paton, J.C., and Kitamura, M. (2011). Cytoprotective roles of ERK and Akt in endoplasmic reticulum stress triggered by subtilase cytotoxin. Biochem. Biophys. Res. Commun. 410, 852-858. https://doi.org/10.1016/j.bbrc.2011.06.078
  41. Voisine, C., Pedersen, J.S., and Morimoto, R.I. (2010). Chaperone networks: tipping the balance in protein folding diseases. Neurobiol. Dis. 40, 12-20. https://doi.org/10.1016/j.nbd.2010.05.007
  42. Wang, X.Z., Lawson, B., Brewer, J.W., Zinszner, H., Sanjay, A., Mi, L.J., Boorstein, R., Kreibich, G., Hendershot, L.M., and Ron, D. (1996). Signals from the stressed endoplasmic reticulum induce C/EBP-homologous protein (CHOP/GADD153). Mol. Cell. Biol. 16, 4273-4280. https://doi.org/10.1128/MCB.16.8.4273
  43. Yun C.H., Lee H.M., Lee S.C., Kim B.S., Park J.W., and Lee B.J. (2013). Involvement of CD137 ligand signaling in neural stem cell death. Mol. Cells 36, 245-251. https://doi.org/10.1007/s10059-013-0137-3

Cited by

  1. Unfolded protein response is activated in Krabbe disease in a manner dependent on the mutation type vol.63, pp.6, 2015, https://doi.org/10.1038/s10038-018-0445-8
  2. Comparison of the transcriptome in circulating leukocytes in early lactation between primiparous and multiparous cows provides evidence for age-related changes vol.22, pp.1, 2015, https://doi.org/10.1186/s12864-021-07977-5