DOI QR코드

DOI QR Code

Galangin and Kaempferol Suppress Phorbol-12-Myristate-13-Acetate-Induced Matrix Metalloproteinase-9 Expression in Human Fibrosarcoma HT-1080 Cells

  • Choi, Yu Jung (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University) ;
  • Lee, Young Hun (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University) ;
  • Lee, Seung-Taek (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University)
  • Received : 2014.08.13
  • Accepted : 2014.11.05
  • Published : 2015.02.28

Abstract

Matrix metalloproteinase (MMP)-9 degrades type IV collagen in the basement membrane and plays crucial roles in several pathological implications, including tumorigenesis and inflammation. In this study, we analyzed the effect of flavonols on MMP-9 expression in phorbol-12-myristate-13-acetate (PMA)-induced human fibrosarcoma HT-1080 cells. Galangin and kaempferol efficiently decreased MMP-9 secretion, whereas fisetin only weakly decreased its secretion. Galangin and kaempferol did not affect cell viability at concentrations up to $30{\mu}M$. Luciferase reporter assays showed that galangin and kaempferol decrease transcription of MMP-9 mRNA. Moreover, galangin and kaempferol strongly reduce $I{\kappa}B{\alpha}$ phosphorylation and significantly decrease JNK phosphorylation. These results indicate that galangin and kaempferol suppress PMA-induced MMP-9 expression by blocking activation of NF-${\kappa}B$ and AP-1. Therefore, these flavonols could be used as chemopreventive agents to lower the risk of diseases involving MMP-9.

Keywords

References

  1. Bond, M., Fabunmi, R.P., Baker, A.H., and Newby, A.C. (1998). Synergistic upregulation of metalloproteinase-9 by growth factors and inflammatory cytokines: an absolute requirement for transcription factor NF-kappa B. FEBS Lett. 435, 29-34. https://doi.org/10.1016/S0014-5793(98)01034-5
  2. Chen, H.J., Lin, C.M., Lee, C.Y., Shih, N.C., Peng, S.F., Tsuzuki, M., Amagaya, S., Huang, W.W., and Yang, J.S. (2013). Kaempferol suppresses cell metastasis via inhibition of the ERK-p38-JNK and AP-1 signaling pathways in U-2 OS human osteosarcoma cells. Oncol. Rep. 30, 925-932. https://doi.org/10.3892/or.2013.2490
  3. Coussens, L.M., Fingleton, B., and Matrisian, L.M. (2002). Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295, 2387-2392. https://doi.org/10.1126/science.1067100
  4. Gum, R., Wang, H., Lengyel, E., Juarez, J., and Boyd, D. (1997). Regulation of 92 kDa type IV collagenase expression by the jun aminoterminal kinase- and the extracellular signal-regulated kinase-dependent signaling cascades. Oncogene 14, 1481-1493. https://doi.org/10.1038/sj.onc.1200973
  5. Hah, N., and Lee, S.T. (2003). An absolute role of the PKCdependent NF-kappaB activation for induction of MMP-9 in hepatocellular carcinoma cells. Biochem. Biophys. Res. Commun. 305, 428-433. https://doi.org/10.1016/S0006-291X(03)00788-5
  6. Hanneken, A., Lin, F.F., Johnson, J., and Maher, P. (2006). Flavonoids protect human retinal pigment epithelial cells from oxidative-stress-induced death. Invest. Ophthalmol. Vis. Sci. 47, 3164-3177. https://doi.org/10.1167/iovs.04-1369
  7. Kim, H.I., Saldova, R., Park, J.H., Lee, Y.H., Harvey, D.J., Wormald, M.R., Wynne, K., Elia, G., Kim, H.-J., Rudd, P.M., and Lee, S.-T. (2013) The presence of outer arm fucose residues on the Nglycans of tissue inhibitor of metalloproteinases-1 reduces its activity. J. Proteome Res. 12, 3547-3560. https://doi.org/10.1021/pr400276r
  8. Knekt, P., Kumpulainen, J., Jarvinen, R., Rissanen, H., Heliovaara, M., Reunanen, A., Hakulinen, T., and Aromaa, A. (2002). Flavonoid intake and risk of chronic diseases. Am. J. Clin. Nutr. 76, 560-568. https://doi.org/10.1093/ajcn/76.3.560
  9. Lee, D.E., Chung, M.Y., Lim, T.G., Huh, W.B., Lee, H.J., and Lee, K.W. (2013). Quercetin suppresses intracellular ROS formation, MMP activation, and cell motility in human fibrosarcoma cells. J. Food Sci. 78, H1464-1469. https://doi.org/10.1111/1750-3841.12223
  10. Lee, S.U., Ahn, K.S., Sung M.H., Park, J.W., Ryu, H.W., Lee, H.J., Hong, S.T., and Oh, S.R. (2014). Indacaterol inhibits tumor cell invasiveness and MMP-9 expression by suppressing IKK/NF-${\kappa}B$ activation. Mol. Cells 37, 585-591. https://doi.org/10.14348/molcells.2014.0076
  11. Lianxu, C., Hongti, J., and Changlong, Y. (2006). NF-kappaBp65- specific siRNA inhibits expression of genes of COX-2, NOS-2 and MMP-9 in rat IL-1beta-induced and TNF-alpha-induced chondrocytes. Osteoarthritis Cartilage 14, 367-376. https://doi.org/10.1016/j.joca.2005.10.009
  12. Lin, C.W., Shen, S.C., Chien, C.C., Yang, L.Y., Shia, L.T., and Chen, Y.C. (2010). 12-O-tetradecanoylphorbol-13-acetate-induced invasion/ migration of glioblastoma cells through activating PKCalpha/ ERK/NF-kappaB-dependent MMP-9 expression. J. Cell Physiol. 225, 472-481. https://doi.org/10.1002/jcp.22226
  13. Lin, C.W., Chen, P.N., Chen, M.K., Yang, W.E., Tang, C.H., Yang, S.F., and Hsieh, Y.S. (2013). Kaempferol reduces matrix metalloproteinase- 2 expression by down-regulating ERK1/2 and the activator protein-1 signaling pathways in oral cancer cells. PLoS One 8, e80883. https://doi.org/10.1371/journal.pone.0080883
  14. Liotta, L.A., Steeg, P.S., and Stetler-Stevenson, W.G. (1991). Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 64, 327-336. https://doi.org/10.1016/0092-8674(91)90642-C
  15. Lv, Z., Yang, D., Li, J., Hu, M., Luo, M., Zhan, X., Song, P., Liu, C., Bai, H., Li, B., et al. (2013). Bone morphogenetic protein 9 overexpression reduces osteosarcoma cell migration and invasion. Mol. Cells 36, 119-126 https://doi.org/10.1007/s10059-013-0043-8
  16. Nam, Y.H., Ryu, E., Lee,D., Shim, H.J., Lee, Y.C., and Lee, S.T. (2011). CagA phosphorylation-dependent MMP-9 expression in gastric epithelial cells. Helicobacter 16, 276-283. https://doi.org/10.1111/j.1523-5378.2011.00851.x
  17. Nelson, A.R., Fingleton, B., Rothenberg, M.L., and Matrisian, L.M. (2000). Matrix metalloproteinases: biologic activity and clinical implications. J. Clin. Oncol. 18, 1135-1149. https://doi.org/10.1200/JCO.2000.18.5.1135
  18. Park, J.H., Jang, Y.J., Choi, Y.J., Jang, J.W., Kim, J.H., Rho, Y.K., Kim, I.J., Kim, H.J., Leem, M.J., and Lee, S.T. (2013). Fisetin inhibits matrix metalloproteinases and reduces tumor cell invasiveness and endothelial cell tube formation. Nutr. Cancer 65, 1192-1199. https://doi.org/10.1080/01635581.2013.828090
  19. Phromnoi, K., Yodkeeree, S., Anuchapreeda, S., and Limtrakul, P. (2009). Inhibition of MMP-3 activity and invasion of the MDAMB- 231 human invasive breast carcinoma cell line by bioflavonoids. Acta Pharmacol. Sin. 30, 1169-1176. https://doi.org/10.1038/aps.2009.107
  20. Sartor, L., Pezzato, E., Dell'Aica, I., Caniato, R., Biggin, S., and Garbisa, S. (2002). Inhibition of matrix-proteases by polyphenols: chemical insights for anti-inflammatory and anti-invasion drug design. Biochem. Pharmacol. 64, 229-237. https://doi.org/10.1016/S0006-2952(02)01069-9
  21. Sato, H., and Seiki, M. (1993). Regulatory mechanism of 92 kDa type IV collagenase gene expression which is associated with invasiveness of tumor cells. Oncogene 8, 395-405.
  22. Sato, H., Kita, M., and Seiki, M. (1993). v-Src activates the expression of 92-kDa type IV collagenase gene through the AP- 1 site and the GT box homologous to retinoblastoma control elements. A mechanism regulating gene expression independent of that by inflammatory cytokines. J. Biol. Chem. 268, 23460-23468.
  23. Scalbert, A., Manach, C., Morand, C., Remesy, C., and Jimenez, L. (2005). Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. Nutr. 45, 287-306. https://doi.org/10.1080/1040869059096
  24. Shin, M., Yan, C., and Boyd, D. (2002). An inhibitor of c-jun aminoterminal kinase (SP600125) represses c-Jun activation, DNAbinding and PMA-inducible 92-kDa type IV collagenase expression. Biochim. Biophys. Acta 1589, 311-316. https://doi.org/10.1016/S0167-4889(02)00195-7
  25. Shin, W.S., Maeng, Y.S., Jung, J.W., Min, J.K., Kwon, Y.G., and Lee, S.T. (2008). Soluble PTK7 inhibits tube formation, migration, and invasion of endothelial cells and angiogenesis. Biochem. Biophys. Res. Commun. 371, 793-798. https://doi.org/10.1016/j.bbrc.2008.04.168
  26. Sivaramakrishnan, V., and Niranjali Devaraj, S. (2009). Morin regulates the expression of NF-kappaB-p65, COX-2 and matrix metalloproteinases in diethylnitrosamine induced rat hepatocellular carcinoma. Chem. Biol. Interact 180, 353-359. https://doi.org/10.1016/j.cbi.2009.02.004
  27. Visse, R., and Nagase, H. (2003). Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ. Res. 92, 827-839. https://doi.org/10.1161/01.RES.0000070112.80711.3D
  28. Watanabe, H., Nakanishi, I., Yamashita, K., Hayakawa, T., and Okada, Y. (1993). Matrix metalloproteinase-9 (92 kDa gelatinase/type IV collagenase) from U937 monoblastoid cells: correlation with cellular invasion. J. Cell Sci. 104 (Pt 4), 991-999.
  29. Yan, C., and Boyd, D.D. (2007). Regulation of matrix metalloproteinase gene expression. J. Cell Physiol. 211, 19-26. https://doi.org/10.1002/jcp.20948
  30. Yi, L., Chen, C.Y., Jin, X., Zhang, T., Zhou, Y., Zhang, Q.Y., Zhu, J.D., and Mi, M.T. (2012). Differential suppression of intracellular reactive oxygen species-mediated signaling pathway in vascular endothelial cells by several subclasses of flavonoids. Biochimie 94, 2035-2044. https://doi.org/10.1016/j.biochi.2012.05.027
  31. Zheng, H., Takahashi, H., Murai, Y., Cui, Z., Nomoto, K., Niwa, H., Tsuneyama, K., and Takano, Y. (2006). Expressions of MMP-2, MMP-9 and VEGF are closely linked to growth, invasion, metastasis and angiogenesis of gastric carcinoma. Anticancer Res. 26, 3579-3583.

Cited by

  1. PTK6 Localized at the Plasma Membrane Promotes Cell Proliferation and MigratiOn Through Phosphorylation of Eps8 vol.118, pp.9, 2017, https://doi.org/10.1002/jcb.25939
  2. Galangin suppresses human osteosarcoma cells: An exploration of its underlying mechanism vol.37, pp.1, 2017, https://doi.org/10.3892/or.2016.5224
  3. Spices for Prevention and Treatment of Cancers vol.8, pp.8, 2016, https://doi.org/10.3390/nu8080495
  4. Chemo-preventive and therapeutic effect of the dietary flavonoid kaempferol: A comprehensive review pp.0951418X, 2019, https://doi.org/10.1002/ptr.6227
  5. Catalytically defective receptor protein tyrosine kinase PTK7 enhances invasive phenotype by inducing MMP-9 through activation of AP-1 and NF-κB in esophageal squamous cell carcinoma cells vol.7, pp.45, 2015, https://doi.org/10.18632/oncotarget.12303
  6. Galangin Inhibits Thrombin-Induced MMP-9 Expression in SK-N-SH Cells via Protein Kinase-Dependent NF-κB Phosphorylation vol.19, pp.12, 2018, https://doi.org/10.3390/ijms19124084
  7. Therapeutic and preventive properties of honey and its bioactive compounds in cancer: an evidence-based review vol.33, pp.1, 2015, https://doi.org/10.1017/s0954422419000192
  8. The Anti-inflammatory Effects of the Bioactive Compounds Isolated from Alpinia officinarum Hance Mediated by the Suppression of NF-kappaB and MAPK Signaling vol.64, pp.1, 2015, https://doi.org/10.4103/cjp.cjp_81_20
  9. The angiotensin-converting enzyme inhibitor, captopril, suppressed hepatic stellate cell activation via NF-kappaB or wnt3α/β-catenin pathway vol.12, pp.1, 2021, https://doi.org/10.1080/21655979.2021.1987091
  10. Apis mellifera propolis enhances apoptosis and invasion inhibition in head and neck cancer cells vol.9, pp.None, 2021, https://doi.org/10.7717/peerj.12139
  11. Galangin suppresses RANKL‐induced osteoclastogenesis via inhibiting MAPK and NF‐κB signalling pathways vol.25, pp.11, 2015, https://doi.org/10.1111/jcmm.16430