• Title/Summary/Keyword: homography estimation

Search Result 47, Processing Time 0.025 seconds

Application of Deep Learning-based Object Detection and Distance Estimation Algorithms for Driving to Urban Area (도심로 주행을 위한 딥러닝 기반 객체 검출 및 거리 추정 알고리즘 적용)

  • Seo, Juyeong;Park, Manbok
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.3
    • /
    • pp.83-95
    • /
    • 2022
  • This paper proposes a system that performs object detection and distance estimation for application to autonomous vehicles. Object detection is performed by a network that adjusts the split grid to the input image ratio using the characteristics of the recently actively used deep learning model YOLOv4, and is trained to a custom dataset. The distance to the detected object is estimated using a bounding box and homography. As a result of the experiment, the proposed method improved in overall detection performance and processing speed close to real-time. Compared to the existing YOLOv4, the total mAP of the proposed method increased by 4.03%. The accuracy of object recognition such as pedestrians, vehicles, construction sites, and PE drums, which frequently occur when driving to the city center, has been improved. The processing speed is approximately 55 FPS. The average of the distance estimation error was 5.25m in the X coordinate and 0.97m in the Y coordinate.

Robust Semi-auto Calibration Method for Various Cameras and Illumination Changes (다양한 카메라와 조명의 변화에 강건한 반자동 카메라 캘리브레이션 방법)

  • Shin, Dong-Won;Ho, Yo-Sung
    • Journal of Broadcast Engineering
    • /
    • v.21 no.1
    • /
    • pp.36-42
    • /
    • 2016
  • Recently, many 3D contents have been produced through the multiview camera system. In this system, since a difference of the viewpoint between color and depth cameras is inevitable, the camera parameter plays the important role to adjust the viewpoint as a preprocessing step. The conventional camera calibration method is inconvenient to users since we need to choose pattern features manually after capturing a planar chessboard with various poses. Therefore, we propose a semi-auto camera calibration method using a circular sampling and an homography estimation. Firstly, The proposed method extracts the candidates of the pattern features from the images by FAST corner detector. Next, we reduce the amount of the candidates by the circular sampling and obtain the complete point cloud by the homography estimation. Lastly, we compute the accurate position having the sub-pixel accuracy of the pattern features by the approximation of the hyper parabola surface. We investigated which factor affects the result of the pattern feature detection at each step. Compared to the conventional method, we found the proposed method released the inconvenience of the manual operation but maintained the accuracy of the camera parameters.

A Method for Improving Accuracy of Object Recognition and Pose Estimation by Using Kinect sensor (Kinect센서를 이용한 물체 인식 및 자세 추정을 위한 정확도 개선 방법)

  • Kim, Anna;Yee, Gun Kyu;Kang, Gitae;Kim, Yong Bum;Choi, Hyouk Ryeol
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.1
    • /
    • pp.16-23
    • /
    • 2015
  • This paper presents a method of improving the pose recognition accuracy of objects by using Kinect sensor. First, by using the SURF algorithm, which is one of the most widely used local features point algorithms, we modify inner parameters of the algorithm for efficient object recognition. The proposed method is adjusting the distance between the box filter, modifying Hessian matrix, and eliminating improper key points. In the second, the object orientation is estimated based on the homography. Finally the novel approach of Auto-scaling method is proposed to improve accuracy of object pose estimation. The proposed algorithm is experimentally tested with objects in the plane and its effectiveness is validated.

Efficient and Robust Correspondence Detection between Unbalanced Stereo Images

  • Kim, Yong-Ho;Kim, Jong-Su;Lee, Sangkeun;Choi, Jong-Soo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.3
    • /
    • pp.161-170
    • /
    • 2012
  • This paper presents an efficient and robust approach for determining the correspondence between unbalanced stereo images. The disparity vectors were used instead of feature points, such as corners, to calculate a correspondence relationship. For a faster and optimal estimation, the vectors were classified into several regions, and the homography of each region was calculated using the RANSAC algorithm. The correspondence image was calculated from the images transformed by each homography. Although it provided good results under normal conditions, it was difficult to obtain reliable results in an unbalanced stereo pair. Therefore, a balancing method is also proposed to minimize the unbalance effects using the histogram specification and structural similarity index. The experimental results showed that the proposed approach outperformed the baseline algorithms with respect to the speed and peak-signal-to-noise ratio. This work can be applied to practical fields including 3D depth map acquisition, fast stereo coding, 2D-to-3D conversion, etc.

  • PDF

Robust Estimation of Camera Motion using Fuzzy Classification Method (퍼지 분류기법을 이용한 강건한 카메라 동작 추정)

  • Lee, Joong-Jae;Kim, Gye-Young;Choi, Hyung-Il
    • The KIPS Transactions:PartB
    • /
    • v.13B no.7 s.110
    • /
    • pp.671-678
    • /
    • 2006
  • In this paper, we propose a method for robustly estimating camera motion using fuzzy classification from the correspondences between two images. We use a RANSAC(Random Sample Consensus) algorithm to obtain accurate camera motion estimates in the presence of outliers. The drawback of RANSAC is that its performance depends on a prior knowledge of the outlier ratio. To resolve this problem the proposed method classifies samples into three classes(good sample set, bad sample set and vague sample set) using fuzzy classification. It then improves classification accuracy omitting outliers by iteratively sampling in only good sample set. The experimental results show that the proposed approach is very effective for computing a homography.

Estimation of Image-based Damage Location and Generation of Exterior Damage Map for Port Structures (영상 기반 항만시설물 손상 위치 추정 및 외관조사망도 작성)

  • Banghyeon Kim;Sangyoon So;Soojin Cho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.49-56
    • /
    • 2023
  • This study proposed a damage location estimation method for automated image-based port infrastructure inspection. Memory efficiency was improved by calculating the homography matrix using feature detection technology and outlier removal technology, without going through the 3D modeling process and storing only damage information. To develop an algorithm specialized for port infrastructure, the algorithm was optimized through ground-truth coordinate pairs created using images of port infrastructure. The location errors obtained by applying this to the sample and concrete wall were (X: 6.5cm, Y: 1.3cm) and (X: 12.7cm, Y: 6.4cm), respectively. In addition, by applying the algorithm to the concrete wall and displaying it in the form of an exterior damage map, the possibility of field application was demonstrated.

Improved CS-RANSAC Algorithm Using K-Means Clustering (K-Means 클러스터링을 적용한 향상된 CS-RANSAC 알고리즘)

  • Ko, Seunghyun;Yoon, Ui-Nyoung;Alikhanov, Jumabek;Jo, Geun-Sik
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.6
    • /
    • pp.315-320
    • /
    • 2017
  • Estimating the correct pose of augmented objects on the real camera view efficiently is one of the most important questions in image tracking area. In computer vision, Homography is used for camera pose estimation in augmented reality system with markerless. To estimating Homography, several algorithm like SURF features which extracted from images are used. Based on extracted features, Homography is estimated. For this purpose, RANSAC algorithm is well used to estimate homography and DCS-RANSAC algorithm is researched which apply constraints dynamically based on Constraint Satisfaction Problem to improve performance. In DCS-RANSAC, however, the dataset is based on pattern of feature distribution of images manually, so this algorithm cannot classify the input image, pattern of feature distribution is not recognized in DCS-RANSAC algorithm, which lead to reduce it's performance. To improve this problem, we suggest the KCS-RANSAC algorithm using K-means clustering in CS-RANSAC to cluster the images automatically based on pattern of feature distribution and apply constraints to each image groups. The suggested algorithm cluster the images automatically and apply the constraints to each clustered image groups. The experiment result shows that our KCS-RANSAC algorithm outperformed the DCS-RANSAC algorithm in terms of speed, accuracy, and inlier rate.

A Camera Pose Estimation Method for Rectangle Feature based Visual SLAM (사각형 특징 기반 Visual SLAM을 위한 자세 추정 방법)

  • Lee, Jae-Min;Kim, Gon-Woo
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.1
    • /
    • pp.33-40
    • /
    • 2016
  • In this paper, we propose a method for estimating the pose of the camera using a rectangle feature utilized for the visual SLAM. A warped rectangle feature as a quadrilateral in the image by the perspective transformation is reconstructed by the Coupled Line Camera algorithm. In order to fully reconstruct a rectangle in the real world coordinate, the distance between the features and the camera is needed. The distance in the real world coordinate can be measured by using a stereo camera. Using properties of the line camera, the physical size of the rectangle feature can be induced from the distance. The correspondence between the quadrilateral in the image and the rectangle in the real world coordinate can restore the relative pose between the camera and the feature through obtaining the homography. In order to evaluate the performance, we analyzed the result of proposed method with its reference pose in Gazebo robot simulator.

Visual Tracking Control of Aerial Robotic Systems with Adaptive Depth Estimation

  • Metni, Najib;Hamel, Tarek
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.1
    • /
    • pp.51-60
    • /
    • 2007
  • This paper describes a visual tracking control law of an Unmanned Aerial Vehicle(UAV) for monitoring of structures and maintenance of bridges. It presents a control law based on computer vision for quasi-stationary flights above a planar target. The first part of the UAV's mission is the navigation from an initial position to a final position to define a desired trajectory in an unknown 3D environment. The proposed method uses the homography matrix computed from the visual information and derives, using backstepping techniques, an adaptive nonlinear tracking control law allowing the effective tracking and depth estimation. The depth represents the desired distance separating the camera from the target.

Development of Visual Odometry Estimation for an Underwater Robot Navigation System

  • Wongsuwan, Kandith;Sukvichai, Kanjanapan
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.4
    • /
    • pp.216-223
    • /
    • 2015
  • The autonomous underwater vehicle (AUV) is being widely researched in order to achieve superior performance when working in hazardous environments. This research focuses on using image processing techniques to estimate the AUV's egomotion and the changes in orientation, based on image frames from different time frames captured from a single high-definition web camera attached to the bottom of the AUV. A visual odometry application is integrated with other sensors. An internal measurement unit (IMU) sensor is used to determine a correct set of answers corresponding to a homography motion equation. A pressure sensor is used to resolve image scale ambiguity. Uncertainty estimation is computed to correct drift that occurs in the system by using a Jacobian method, singular value decomposition, and backward and forward error propagation.