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Visual Tracking Control of Aerial Robotic Systems
with Adaptive Depth Estimation

Najib Metni and Tarek Hamel

Abstract: This paper describes a visual tracking control law of an Unmanned Aerial Vehicle
(UAV) for monitoring of structures and maintenance of bridges. It presents a control law based
on computer vision for quasi-stationary flights above a planar target. The first part of the UAV’s
mission is the navigation from an initial position to a final position to define a desired trajectory
in an unknown 3D environment. The proposed method uses the homography matrix computed
from the visual information and derives, using backstepping techniques, an adaptive nonlinear
tracking control law allowing the effective tracking and depth estimation. The depth represents
the desired distance separating the camera from the target.

Keywords: Aerial robots, guidance and control, parameter identification, vision based navigation.

1. INTRODUCTION

Visual servoing techniques concern the problem of
using a camera to provide information of position and
attitude of a robotic system as well as to help tracking
a certain predetermined trajectory. Micro aerial
vehicles (called also Unmanned Aerial Vehicles) are
often required to execute complex tasks (such as
inspection or long time hovering) in unknown
environments. To enable autonomous detection and
navigation of these UAV, almost all control theories
are built around a vision system by using visual
servoing as a control method [1,2]. A typical vision
system will include a camera, an Inertial Navigation
System (INS) in order to compute the attitude,
orientation and velocity of the vehicle. Many vision
applications involving mobile robotic systems have
been considered [3-5]. Most UAV’s are underactuated
systems, their coupled dynamics add a complexity to
visual control problems. Many control laws were
presented for aerial systems such as helicopters [6-9]
for outdoor use as well as indoor operations [1,10].
Visual servoing techniques could be classified into
three main classes [11]: Position Based Visual Servo
(PBVS or 3D), Image Based Visual Servo (IBVS or
2D) and the Homography Based Visual Servo (HBVS

or2 % D). 3D visual servoing needs a full reconstruct-

tion of the target pose with respect to the camera, it
leads to a state estimation problem in the cartesian
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frame [12-14] and a classical state-space control
design [6,8,9]. The main drawback of the PBVS
methods is the need of a perfect knowledge of the
target geometrical model [11], hence it is highly
sensitive to camera calibration errors. The second
class, known as 2D visual servoing, aims to control
the dynamics of features directly in the image plane.
Many extensions to the classical IBVS methods have
been proposed for the control of non-linear dynamic
systems, as the robust backstepping {1,15] and
optimal control techniques [16].

This paper is based on the homography method

2 1 D visual servoing) presented in [17,18] that
5 p

consists of combining 2D and 3D visual features. The
advantages of this method are that an accurate model
of the environment is not required and the attractive
domain is not limited. More precisely, a homography
matrix is estimated from the planar feature points
extracted from two images (corresponding to the
current and desired poses), and from this matrix, we
estimate the relative position (translation vector and
rotation matrix) of these two views. Many works have
been in this line of thinking for robot manipulators
[19-217 and wheeled mobile robots [22].
Homography-based strategies have succeeded to
regulate the system’s pose (position/orientation
couple) to a constant position defined by a reference
image. However using only one reference image
results in some difficulties because the reference
depth is an unobservable parameter [23]. In such cases,
decoupling translation and rotation components could
be useful. However, if depth information is needed
another solution must be considered: let the system
track a desired trajectory and design an adaptive
update law to estimate depth information.

Due to new image technologies and advances in
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control, many researches have been interested lately to
Trajectory Tracking. In [24], the authors proposed a
visual tracking controller based on a linearized system
of equations and Extended Kalman Filtering (EKF)
techniques. Mahony and Hamel [25] considered a
visual servo controller by tracking parallel linear
visual features using nonlinear backstepping
techniques.

This work could be viewed as an extension to the
work done in [22] where the authors considered the
kinematic equations of a mobile robot. In this paper,
we consider a general mechanical dynamical model of
a flying robot capable of quasi-stationary maneuvers.
We will then derive a control law that forces the
trajectory to track a prerecorded image sequences
(desired trajectory). This desired trajectory could be
taken from an operator-driven teach pendant step done
preliminary. At each step the current image and the
desired image will be compared to a reference image
by homography matrices. To determine the full
translation vector, we will estimate the reference
depth information using the proposed adaptive control
law. Unlike methods using EKF (Extended Kalman
Filter), the Lyapunov-like analysis is based on the
nonlinear dynamical model of the flying vehicle. The
main contribution of this paper is a new method for
visual servo controlling of a UAV in an unknown
environment after an analysis of prerecorded image
sequence. The method does not need any special
predetermined landmarks, in addition the depth is
estimated using an adaptive law. The major drawback
is the lack of experimental results. In addition, the
gravity cosine direction, which is an inertial measure,
is computed from visual features under the condition
that the gravity vector is orthogonal to the target. The
outline of the paper is as follows: we present the
mathematical model of a flying UAV in Section 2, and
the camera modelling is derived in Section 3. The
tracking control law for the complete dynamics and
the adaptive update law are presented in Section 4. We

provide simulations and results discussion in Section 5.

2. UAV DYNAMIC EQUATIONS

In this section, we will derive mechanical equations
for a general model of a UAV’s in hover or quasi-
stationary flights.

Let F* = {E..E,.E,} denote a right-handed inertial
or world frame such that E, denotes the vertical
direction downwards into the earth. Let &=(x,y,z)
denote the position of the center of mass of the object
in the frame F relative to a fixed origin in F*. Let
F={E{,E5,E3} be a (right-hand) body fixed frame.
The orientation of the airframe is given by a rotation
R:F —F", where R e SO(3) is an orthogonal rotation

matrix.

Let Ve F denote the linear velocity and Qe F
denote the angular velocity of the airframe both
expressed in the body fixed frame. Let m denote the

mass of the rigid object and let IeR>® be the
constant inertia matrix around the center of mass
(expressed in the body fixed frame F' ). Using Newton
formalism, it yields the following dynamic model for
the motion of a rigid object:

E=RV, (1)
mV =-mQxV +F, )
R = Rsk(Q), (3)
IQ=-QxIQ+T, 4)

where F is the vector forces and I' is the vector
torques. The notation sk(€2) denotes the skew-

symmetric matrix such that sk(Qyv=Qxv for the

vector cross-product x and any vector ve R>. The
vector force F is defined as follows :

FzngTe3 —~Tey. (5)

In the above equation, g is the acceleration due to

gravity, and 7 represents the thrust magnitude, it is
also the unique control input for the translational
dynamics.

3. CAMERA MODELLING AND
HOMOGRAPHY MATRIX

In this section we will present a brief discussion of
the camera projection model and then introduce the
homography relations.

3.1. Projection models

Visual information is a projection from the 3D
world to the 2D camera image surface. The pose of
the camera determines a rigid body transformation
from the current camera fixed frame F to the reference

frame F* and subsequently from the desired image
frame F; to F°. One has

P* =RP+E, (6)
P*ZRde +(tgd, (7)
as a relation between the coordinates of the same

point in the current body fixed frame ( P € F' ) and the
desired body frame ( P; € F;) with respect to the

world frame (P* € F*). And where & and &, are

expressed in the reference frame F".
Remark 1: There are 2 kinds of projection used in
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vision: the spherical and the flat projections. The
spherical projection identifies the projection plane as
the spherical surface and the image point p is given

by p=ﬁ(X ,Y,Z). However, in the flat projection

the point is
image pzé(X ,Y,Z). Indeed, since equality in

projected on a plane with its

projective geometry is an equality ‘between
directions’, both points are on the same ray emanating
from the origin and are thus not distinguished. In the
following analysis, we will assume a calibrated
camera but we do not distinguish between spherical or
flat projections.

3.2. Planar homography

Let p;, pz» and p; be the 3 images of the same
point P on the target when the camera is aligned
respectively with the frames F, F;, and F ¥,

Assuming we have a planar surface m containing
a set of target points, the plane could be expressed as:

n:{P* eRr:aTP - =0},

where d” is the distance of the plane to the origin of
F*. n, ng, and n" are the normal unit vectors to
respectively the actual, the desired and the reference
(resp.
t=-RT £). From (6) and (7) and since all target
points lie in a single planar surface =, one has

image planes. Let us define t=-RT¢

*T
pi=a RT+m* Py i=1.,k, (8)
d
*T
t :
Pid =% [Rg + ";* Jp,», i=1,...k )

The factors o and o, are positive constants

depending on the unknown parameter 4" which is
the distance between the target and the desired plane.

The projective mapping H = (RT +’Z¥) (respec-

*:
tan T

*

tively H, = (Rg + )) is called a homography

matrix, it relates the images of points on a target plane
when viewed from two different poses (defined by the

coordinate systems F and F, with respectto F").

More details on the homography matrix could be
found in [18]. The homography matrix contains the
pose information (R,E) (resp. (R;,E;) ) of the

camera whose extraction can be quite complex. Many

algorithms could be found in the literature (see for
example [18,26,27]).

One quantity r» =di

*

(resp. r, =Z—‘j ) could be

calculated easily. the equation of the plane n could
be written as (#,P)=d for the usual inner product
(,). Thus (n,RTP*+f)=d giving (m,R"P")=d
—n't. Therefore, (Rn,P*)=d—-n"tand it follows
that:

n* =Rn,
d*=d-nt.

With changing the plane representation, we get the
following relation:

n't

r=1+ —.
d

It can also be shown that

nl't

d*

T
det(H) = det(R” + ”jT) el

Similarly, we have det(f;)=7,.

4, TRACKING CONTROL STRATEGY

In the following analysis, it is assumed that the
camera fixed frame coincides with the body frame.

Let P denote the observed point of reference of the

planar target, and P" be the representation of P in the
camera fixed frame at the reference position (Fig. 1).
The control objective is to ensure that the
coordinate frame F tracks the desired frame Fy (i.e.,
the current image point p tracks the desired image
point p;). The tracking problem reduces to find a

control input depending on the measured and the
estimated states such that the errors

o(n)=(P-R"P"),
er(t)=(Py —RgP")

are asymptotically stable.
Note that the two error terms ¢ (f) and e,(¢) are

not defined in terms of visual information. Following
[18], the camera can be controlled in the image space
and in the Cartesian space at the same time. They
propose the use of three independent visual features,
such as the image coordinates of the target point
associated with the ratio r delivered by determinant of
the homography matrix. Consequently, let us consider

the reference point P lying in the reference plan =n
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Rty

Fig. 1. Camera projection diagram showing the
reference frame ( F"), the current frame (F)

and the desired frame ( F; ).

and define the scaled cartesian coordinates using
visual information as follow:

Knowing that

* *
1Pl _n"p
Pl n'p

v,

it follows that we can reformulate the errors ¢ (¢)

and e;(¢) in terms of the available visual information

*T *

e=|2 Tp rp-R'p* |, (10)
np
*T *
n *

Sd:{ Tp raPa —Rip ] (amn
Na Pqa

From the above discussion and from (1) the
dynamics of the errors are given by

E=-Qxeg—pV, (12)
Eq=—Qxg;—pVy, (13)
L is an unknown parameter, it will be

where p= ”

estimated by an adaptive update law using a double
estimator [28]. The term ¥, which is the velocity of
the vehicle along the desired trajectory is an unknown
term and could not be measured, however &, can be
determined from the visual information. The desired
trajectory will be used as a feed-forward in the control
strategy. Note that to ensure the identification of p,
the following assumptions must be satisfied:

1. The desired visual error g; is fourth order

differentiable. This is due to the appearance of
8[(13), and 8‘(114) in the

expression and the adaptive update law. For the
sake of our analysis, the first three derivatives of

&z must be known.

Eqs &g controller

2. The desired visual error derivative &,, does not
vanish for all ¢>0.

3. Let (&,(1),R;(t)) be the desired trajectory which
includes orientation information expressed in the
inertial space. This trajectory (as well as the
velocity V) ould not be computed since the
distance between the mobile and the target is not
measurable. Rather than working with the
complete trajectory, one may choose R, to be the
identity rotation and then compute the visual

variable €.

4. To compute the gravity cosine direction from
visual information, we assume that the plane 7 is
perpendicular to the line of sight of the camera

when aligned to the reference frame F". In other
terms, n' =e3.
Smooth desired visual error functions &, must be

generated from the prerecorded image sequence. &y

could be a smooth function of time and therefore
derivatives would be easily extracted (cf. assumption
14).

We choose a given desired trajectory, and then look
to a control law that achieves regulation of the error
(6 :a—RTRdsd) towards zero. Recalling assump-

tion 14, the desired rotation will be chosen to be the
identity rotation, then the error §; could be written as

) =8—RTed.

In addition to the basic tracking problem, it is desired
that the control law estimates online the unknown
value of p.

The dynamics of &; is given by
. T.
51=—Qx3 —pV -R ¢4

Following a standard trick in adaptive control when
there is an unknown input gain, two dynamic variable

estimates are introduced: p being the estimator of

p and b the estimator of b=1.

P
used to avoid the division by p which could take a

This procedure is

null value. We will choose a virtual input velocity V"
defined as

VY= 19(7];‘—51 ~RT ¢ ).
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With this choice, one has

51=-Qx8 —R" 54-pd, —

where the error 8, =V -V is the difference

between the velocity and its virtual input. Let

p=p—-p0 and b= ——b be the estimation errors.

With the above choice of virtual control V", the
time derivative of the error 8; becomes
. k ~( k
§1=~Qx8 - =18 —pd, + pb[—lél - Rred],(14)
m m
Define the following storage function

1.2, 1
S =—18 " +—pp°, >0
1 2| 1| 2Yle "1

since the unknown constant p is positive, S) is

positive definite in & and b. Taking the time
derivative of S; one has

A~

-ﬁsf—pa 8, +phdl [klal RTsd] L pb.
m N

Cancelling the terms containing the unknown error
b, we choose the following dynamics for the

estimator b
; ky T,
b=7181 —SI—R Ed (15)
m
with the above choice, one has
. k
§1==-L3 ~pd[ 8.
Deriving 6, and recalling (15)
k2 kl N ~
:—Qx82——62 +83 +—pr+p61, (16)
m m
83 = F - Fv

between the input and the virtual input F, which is
given by

where the error is the difference

_ﬁb’\RT‘c}d
m
~ . k
—bRT 5,4+ P8, —;252. (17)

At this stage we define a second storage function S;

1 2 1 2 1 ~2
=—|8 " +=18, | +—
5 |3y | 5 18, | o, Pb
and its time derivative given by

S2_ k] 61 kl 62 8] 62 +8283 +k—bp62
In terms of the error variables, the J, derivative may
be written as

§,=-0Q%x8, + p§, —@-62 +35 +ﬁb/3V. (18)
m m

To continue with the backstepping procedure, we
derive (17) to get the dynamics of 83 which is quite
complex due to its dependance on many parameters,
we will present the time derivative of 65 in a simple
form

53= QX3 +Qx F+F—Y-Xp-4p, (19

where X is the part related to the unknown variable
P, Y gathers almost all known or measurable terms

and A is the part multiplying [) X, Y, and 4

are functions of all known parameters (see the
appendix for complete equations).

Applying two operations (derivation and cross
multiplying by Q) to (5) and then adding

Qx F + F = -Te; + Tsk(e;)Q.
Choosing the virtual input to be:
[Te; + Tsk(e)Ql = Ap+Y -8, —kads.  (20)

Knowing that e; € ker[sk(e;)], the two terms of the
above equation are independent, we will separate
them by multiplying (20) by e

T'==e (4p+Y -8, - k3;), 1)

and then multiply (20) by the projection plane
I, =1- e3e3T
[Tsk(e;)Q) =TI, (4p+Y =8, — kB3 @

The storage function associated with this stage of
backstepping is

1 oo 1 2 1 2,.0P 2, 1 .2
S:=—6, [ +—=1|6 +—=|0: [ +—p +—p°.(23
3 2|1| 2|2| 2|3| 2Y1b 2Y2,0( )

Taking the derivative of S, yields



56 Najib Metni and Tarek Hamel

k k. k
S =—;‘|6l 2 72,52 P —;3|63 * +8% 8,
i L 24)
+-Lbp83V — p(8} X +8{8,)—— pp,
m Y2

where &, is the input error
84 = TSk(e3 )Q - [Tsk(e3 )Q]v

Due to the special form of the error §,, it could be
shown that this error lies on the plane II, , in other
terms we have the relation: m, 8, =3,.

To cancel the contribution of the parametric error
p in (24), we choose the dynamics of p as:

5=72[%5B£V—5{62—6§X}. (25)

The last step of this procedure is to compute the
torque control. For the sake of simplicity, we will use
the high gain control. Consider the derivative of 8,

84 = Tsk(e;)(Q - Q") + Tsk(e; (Q - Q).
We will choose a control law for € with a gain high

enough to neglect the effect of (3¥ (with this strategy,

we can assume that Q" =0). Let

., Q= (—k4 + ;] I, (Q-Q") (26)

with Q" =[Q} Q5 Q3]". The first two terms €
and Q) could be computed from (22), and Q; will

be extracted from (28). Recalling (4), the torque input
[ is introduced via the derivative Q

[=IQ+QxIQ. (27)
The dynamical structure of this kind of flying
vehicle and the appropriate backstepping control
strategy requires only the control inputs 7, T to
achieve the desired trajectory tracking. This leaves the
input Q; free to stabilize the yaw speed from the
following equation:

Qs = ~ksQ3, ks >0. (28)

Then the proposed control algorithm will achieve
the monotonic decrease of the following Lyapunov
function

1 2 1 2 1 2 1 2
L=—|8; " +=|065 " +=183|" +=1d
2|1| 2l2| 2|3| 2|4|

+L52+Lﬁ2+lgg
2y, 2y, 2

and its time derivative given by
ks ks o ks
L=——8 [ =——=[8, [" ——|&; |
m m m

. (29)
—;4 |84 P +8584 — k53

the above equation is negative definite if the following
conditions are satisfied

k>0, (30)
k, >0, €2y
ks >0, (32)
2
m
ky >—. 33
T (33)

Theorem 1: Consider the dynamics of the flying

vehicle. Let the control 7 and I' be given by (21)
and (27). In addition let all the conditions given by
(30) to (33) be satisfied. Therefore, the proposed
control algorithm ensures the asymptotic convergence
of the error §; and the exponential stability of Q.

In addition, the control law ensures the convergence
of the parameters to their true values:

b—>0, p—o0.

Proof: Applying Lyapunov argument in (29), one
can conclude that the errors &, 6,, 05, and &,
converge asymptotically to zero. From (28), one can
ensure the exponential stability of Q.

To prove the convergence of the estimator
parameter errors b and p, we appeal to LaSalles
principle. The invariant set is contained in the set

defined by the conditions §,=0 (i=12,3,4).
Recalling (15) and (25), it follows that b=0 and
f) =0 on the invariant set. Taking the expressions of

the derivatives of the errors &, and 9,, it follows that

pbey=0, (34)
ppleq=0. (35)

From (34) and knowing that p is a constant, and
under the assumption that ¢;#0 on the invariant
set, we ensure the convergence of 5 to zero. In this

way b will converge to a constant b. The second
equation (35) ensures the convergence of p to zero

(I;is a constant). Consequently, this ensures the
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A

asymptotical convergence of » and p to their true
values.

5. SIMULATION RESULTS

In this section, we present some simulation
examples in order to evaluate the effectiveness of the
proposed control and estimation laws. The experiment
considers a desired trajectory defined in the image
plane as a circle centered at (0,0,5) and of radius 1.

The points p;; and the corresponding parameters

were computed off line before the start of the tracking
mission. The reference image is composed from five
points: four on the vertices of a planar square and one
on its center. The available information are the pixel
coordinates of the five points observed by the camera.

The simulations are based on the X4-flyer model
which is a system consisting of four individual
electric fans, linked to a rigid cross frame as shown in
Fig. 2. It operates as an omnidirectional UAV. Vertical
motion is controlled by collectively increasing or
decreasing the power of all four motors. Lateral
motion is achieved by controlling differentially the
motors generating a pitch/roll motion of the airframe
that inclines the collective thrust and leads to lateral
acceleration. Yaw control is derived from the reactive
couple applied to the airframe due to rotor drag.

The parameters used for the dynamical model are
m=1.5, I=diag[0.4,0.4,0.6] and g =10. Initially,
the robot is assumed to hover at a position (5,4,12).
It is assumed that the plane of the reference image is
parallel with the target plane at a distance b=3 (i.e.,
p =1/3 and the unit vector normal to the target plane is

equal to the direction of the gravity n" =e; as

mentioned in assumption 4).

The first simulation is a counter-example where we
consider a stabilization mission. Using the same
proposed law, the position of the flying vehicle will
successfully converge to the desired position (Fig. 3).

Fig. 2. A prototype X4-flyer.

L i L
o 50 100 0 50 100 o 50 100
t t t

Fig. 3. Evolution of the position of the mobile
throughout a stabilization mission.

— Estimation of b
= = Estimation of p

Fig. 4. Divergence of the two estimations: p

(dashed line) and b (solid line) during a
stabilization mission.

However, from Fig. 4, the depth information given by
p and b could not be estimated (due to the fact
that £, =0). In this case, the desired trajectory is a

fixed point given by the coordinates of the desired
arrival point (0,0,5).

The second simulation example considers a desired
trajectory defined in the image plane as a circle
centered at (0,0,5) and of radius 1. For the adaptive
update law, the initial guesses of p, and j, are as

follows:
Py =0.25,
~ 1
Po

The control design used the following gains,

k=25, ky =12,
ks =2.0, ky =2.5,
v; =1/400, vy, =1/80.
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z (meters)

¥ {metess) X {meters)

Fig. 5. Evolution of the position of the mobile.

05r
041

031

Y Image plane (pixels)
o

0.8

Fig. 6. Evolution of the point on the image plane.

The gains y; and vy, ofthe adaptive law must be

chosen very carefully. Some tuning must be
performed to choose the control gains then adjust the
adaptive gains.

In Figs. 5, 6, and 7 are the results of the simulation
described above. From Fig. 5, it is clear that the
position of the vehicle is tracking smoothly a circle
contained in the desired plan z=5. Fig. 6 describes
the trajectory of the image in the image plane, it
shows more explicitly the convergence to the desired
trajectory defined by complete circles of radius » =1.
Fig. 7 shows us the convergence of the estimations of

p and b to the exact values (p = % and h=3).

To show the robustness of our estimators, a white
noise was added to the image acquisition process to
simulate the input noise as well as the disturbances
encountered in an unknown environment (low and
high frequencies). Fig. 8 shows the results of the two

estimations p and b along the mission. It may be

seen that the added noise did not degrade the
performance of the estimators. The two estimations
converge, with some fluctuations, to their true values.

45 T T T T T

= = Estimation of p
— Estimation of b

@

w o
/"___, T

L

)
o

T
4

Estimation {meters)
~
T

)
T
L

T
L

Time (sec)
Fig. 7. Evolution of 2 estimations: p (dashed line)
and b (solid line).

45 T T T T

— Estimation of b
..+ Estimation of p

IS

w
o
L

Estimation {meters)
o~ I
w ~» in w
T T T
L I L L

T
L

o

o
omn

n

0 L L L L L ) L .
0 5 10 15 20 25 30 35 40 45 50
Time (sec)

Fig. 8. Evolution of 2 estimations: p (dashed line)

and b (solid line) with added white noise to
image acquisition.

In these simulations, the desired trajectory was
totally known and incorporated in the algorithm as a
circle equation. We did not take into account the point
matching problem and all its subsequent difficulties as
feature points loss and reselecting new points. We thus
assume here that all features points must always stay
in the camera’s field of view.

6. CONCLUSION

In this paper, we have proposed a control law to
force an unmanned aerial vehicle (UAV) to track a
desired trajectory defined by a series of prerecorded
images. Euclidean homographies were extracted using
three views: a current image, the corresponding
desired image and a unique reference image.
Extracting the pose parameters from the
homographies will leave us with unknown parameters
depending on the depth from the target to the
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reference image. Thus, an adaptive update law for the
estimation of this unknown constant parameter was
also presented. Simulations are provided to prove the
convergence of the estimator as well as the controller.

This work is part of a research direction in the
autonomous UAV’s flights where a big work still to be
done. In addition, the linear and rotational velocities
of the vehicle must be accurately known, in this field
the authors are also working on nonlinear state
observers.

APPENDIX
This appendix gives the complete equation of the

derivative of 83. Recalling (19)
$3=—Qx8 +QXF+F Y- Xp—A4p.

The three expressions of 4, X, and Y are given
by

= k‘bV+6,,
m

\U ~
X=(b) (ﬁal —Rng]— (kl b- [)—mij
m m
~ k A A
Y=(b) (ﬁsl —RngJ—bRTg'd —ﬁb,aV
m
+(/3V+RTéd)[ 1b+( L2 25 /Bj
[k AT . T
—+1|{|bR Ed +bR €4
m
—'——1- |:l§ (kl 61 Rng) bR 8d:|
m

—(k—% k—lé,s) [,551 —k—252 +53].
m m m

N k \U
The notation (b) and (b) denote respec-tively
the known (or measurable) and unknown parts of the

expression of b. In other terms, b could be written as

i)+ )"
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