• Title/Summary/Keyword: homogenous

Search Result 487, Processing Time 0.025 seconds

Preparation of Fe-ACF/TiO2 Composites and their Photocatalytic Degradation of Waste Water

  • Oh, Won-Chun;Bae, Jang-Soon
    • 한국세라믹학회지
    • /
    • 제45권11호
    • /
    • pp.667-674
    • /
    • 2008
  • In this study, we prepared Fe-activated carbon fiber(ACF)/$TiO_2$ composites with titanium (VI) n-butoxide (TNB) as the titanium source for ACF pre-treated with iron compounds through the impregnation method. In terms of textural surface properties, the composites demonstrate a slight decrease in the BET surface area of the samples and an increase in the amount of iron compounds treated. The surface morphology of the Fe-ACF/$TiO_2$ composites was characterized by means of SEM. The composites have a porous texture with homogenous compositions of Fe and titanium dioxide distributed on the sample surfaces. The phase formation and structural transition of the iron compounds and titanium dioxide were observed in X-ray diffraction patterns of the Fe-ACF/$TiO_2$ composites. The chemical composition of the Fe-ACF/$TiO_2$ composites, which was investigated with EDX shows strong peaks for the C, O, Fe and Ti elements. The photo degradation results confirm that the Fe-ACF/$TiO_2$ composites show excellent removal activity for the COD in piggery waste due to photocatalysis of the supported $TiO_2$, radical reaction by Fe species, and the adsorptivity and absorptivity of ACF.

Treatment of Oily Wastewater with WPO and CWO

  • Han, Mei;Chen, Yihui;He, Fang;Yu, Li
    • 대한화학회지
    • /
    • 제58권1호
    • /
    • pp.68-71
    • /
    • 2014
  • Petroleum refining unavoidably generates large volumes of oily wastewater. The environmentally acceptable disposal of oily wastewater is a current challenge to the petroleum industry. Nowadays, more attentions have been focused on the treatment techniques of oily wastewater. Oily wastewater contained highly concentrated and toxic organic compounds. Wet peroxide oxidation (WPO) and catalytic wet oxidation (CWO) were applied to eliminate pollutants to examine the feasibility of the WPO/CWO of oily wastewater. The results indicated that more than 80% chemical oxygen demand (COD) removal from oily wastewater was achieved with CWO. Homogenous catalyst, $NaHCO_3$ and $Na_2CO_3$ and NaOH showed effective removal for pollutants in oily wastewater. Greater than 90% COD removal was achieved with WPO. It was concluded that WPO was a far more effective process for oily wastewater.

FABRICATION OF ZrO2-BASED NANOCOMPOSITES FOR TRANSURANIC ELEMENT-BURNING INERT MATRIX FUEL

  • MISTARIHI, QUSAI;UMER, MALIK A.;KIM, JOON HUI;HONG, SOON HYUNG;RYU, HO JIN
    • Nuclear Engineering and Technology
    • /
    • 제47권5호
    • /
    • pp.617-623
    • /
    • 2015
  • $ZrO_2$-based composites reinforced with 6.5 vol.% of carbon foam, carbon fiber, and graphite were fabricated using spark plasma sintering, and characterized using scanning electron microscopy and X-ray diffractometry. Their thermal properties were also investigated. The microstructures of the reinforced composites showed that carbon fiber fully reacted with $ZrO_2$, whereas carbon foam and graphite did not. The carbothermal reaction of carbon fiber had a negative effect on the thermal properties of the reinforced $ZrO_2$ composites because of the formation of zirconium oxycarbide. Meanwhile, the addition of carbon foam had a positive effect, increasing the thermal conductivity from 2.86 to $3.38Wm^{-1}K^{-1}$ at $1,100^{\circ}C$. These findings suggest that the homogenous distribution and chemical stability of reinforcement material affect the thermal properties of $ZrO_2$-based composites.

Genetic Variation in Korean Populations of Wild Radish, Raphanus sativus var.hortensis f. raphanistroides (Brassicaceae)

  • Hur, Man Kyu
    • Journal of Plant Biology
    • /
    • 제38권4호
    • /
    • pp.329-336
    • /
    • 1995
  • Raphanus sativus L. var. hortensis f. raphanistroides (wild radish: Brassicaceae), a herbaceous perennial, occurs only on beaches in East Asia. Genetic diversity and population structure of seven Korean populations were investigated using starch gel electrophoresis. Although the Korean populatins are small, isolated with patchy distribution, the population maintain a moderate level of genetic diversity; the mean percentage fo polymorphic loci was 51.4%, mean number of alleles per locus was 1.84, and mean expected heterozygosity was 0.116. A combination of animal-outcrossing breeding system, wide geographical distribution, restricted ecological distribution, and a propensity for high fecundity may in part be explanatory factors contributing the moderate level of genetic diversity within populations. An overall excess of homozygotes relative to Hardy-Weinberg expetations (mean FISa=0.116) indicates that consanguineous mating occur within wild radish populations, leading to a family structure within a circumscribed area. Although population of wild radish experience a limited gene flow, only 5% of the total genetic variation found in Korean wild radish populations examined is due to differences among populations (mean GST=0.052). This value is considerably lower than the mean values of species with similar life history and ecological characteristics. However, significant differences were found in allele frequencies between populations for all polymorphic loci (P<0.01). It is supposed that directional selection toward genetic uniformity (similar gene frequencies) in a relatively homogenous habitat is thought to be operated among Korean wild radish populations.

  • PDF

Structure and Magnetic Properties of a Fe73.5Si13.5B9Nb3Cu1 Alloy Nanopowder Fabricated by a Chemical Etching Method and Milling Procedure

  • Hong, Seong-Min;Kim, Jeong-Gon;Kim, Cheol-Gi
    • Journal of Magnetics
    • /
    • 제14권2호
    • /
    • pp.71-74
    • /
    • 2009
  • The magnetic and structural properties of FINEMET (the Hitachi product name of the Fe-Si-B-Nb-Cu alloy) nanopowder with a composition of $Fe_{73.5}Si_{13.5}B_9Nb_3Cu_1$ atomic percent were investigated after annealing, chemical etching, and mechanical milling. The primary and secondary crystallization temperatures were 523 and $550^{\circ}C$, respectively. The grain size of the particles was adjusted by annealing time. Optimally annealed particles exhibited a homogenous microstructure composed of nanometer-sized crystalline grains. The grain boundary of the annealed particles was etched preferentially by chemical etching. Chemically etched particles were broken at the grain boundary by high-energy ball milling. As a result, a nanometer-sized FINEMET powder with a uniform size of crystalline grains was fabricated.

어린 알라스카 말라무트의 대퇴골에 발생한 골육종 (Juvenile osteosarcoma in the femur of an Alaskan malamute)

  • 지향;오상연;비둘;김현욱;최지혜;김대용
    • 대한수의학회지
    • /
    • 제45권3호
    • /
    • pp.387-390
    • /
    • 2005
  • An 18-month-old male Alaskan malamute was euthanized due to slowly growing mass around the left femur after history of left posterior limb lameness. At necropsy, a firm confluent mass approximately 15cm in diameter was noted surrounding the femur and proximal portion of the tibia/ulna with traumatic ulceration of the overlying skin. On cross sections of the mass, many unencapsulated firm tan coalescing lobules were noted. The neoplasm consisted of closely packed spindle cells with homogenous eosinophilic material (osteoids) between the neoplastic cells. The pulmonary metastasis was confirmed. Based on the gross and histopathologic examinations, the case was diagnosed as juvenile osteosarcoma.

두께 조절이 가능한 코어셸 형태의 SiO2 coated CoFe2O4 구조 (Thickness Control of Core Shell type Nano CoFe2O4@SiO2 Structure)

  • 유리;김유진;피재환;김경자
    • 한국분말재료학회지
    • /
    • 제17권3호
    • /
    • pp.230-234
    • /
    • 2010
  • Homogenous silica-coated $CoFe_2O_4$ samples with controlled silica thickness were synthesized by the reverse microemulsion method. First, 7 nm size cobalt ferrite nanoparticles were prepared by thermal decomposition methods. Hydrophobic cobalt ferrites were coated with controlled $SiO_2$ using polyoxyethylene(5)nonylphenylether (Igepal) as a surfactant, $NH_4OH$ and tetraethyl orthosilicate (TEOS). The well controlled thickness of the silica shell was found to depend on the reaction time and the amount of surfactant used during production. Thick shell was prepared by increasing reaction time and small amount of surfactant.

Wet adhesion and rubber friction in adhesive pads of insects

  • Federle, Walter
    • 접착 및 계면
    • /
    • 제5권2호
    • /
    • pp.31-42
    • /
    • 2004
  • Many animals possess on their legs adhesive pads, which have undergone evolutionary optimization to be able to attach to variable substrates and to control adhesive forces during locomotion. Insect adhesive pads are either relatively smooth or densely covered with specialized adhesive hairs. Theoretical models predict that adhesion can be increased by splitting the contact zone into many microscopic, elastic subunits, which provides a functional explanation for the widespread 'hairy' design. In many hairy and all smooth attachment systems, the adhesive contact is mediated by a thin film of liquid secretion between the cuticle and the substrate. By using interference reflection microscopy (IRM), the thickness and viscosity of the secretion film was estimated in Weaver ants (Oecophylla smaragdina). 'Footprint' droplets deposited on glass are hydrophobic and form low contact angles. IRM of insect pads in contact showed that the adhesive liquid is an emulsion consisting of hydrophilic, volatile droplets dispersed in a persistent, hydrophobic phase. I tested predictions derived from film thickness and viscosity by measuring friction forces of Weaver ants on a smooth substrate. The measured friction forces were much greater than expected assuming a homogenous film between the pad and the surface. The findings indicate that the rubbery pad cuticle directly interacts with the substrate. To achieve intimate contact between the cuticle and the surface, secretion must drain away, which may be facilitated by microfolds on the surface of smooth insect pads. I propose a combined wet adhesion/rubber friction model of insect surface attachment that explains both the presence of a significant static friction component and the velocity-dependence of sliding friction.

  • PDF

Improving current and luminous efficacy of red phosphorescent Organic Light Emitting Diodes (OLEDs) by introducing graded-layer device designs enabled by Organic Vapor Phase Deposition (OVPD)

  • Schwambera, Markus;Keiper, Dietmar;Meyer, Nico;Heuken, Michael;Lindla, Florian;Bosing, Manuel;Zimmermann, Christoph;Jessen, Frank;Kalisch, Holger;Jansen, Rolf H.;Gemmern, Philipp Van;Bertram, Dietrich
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.1140-1143
    • /
    • 2009
  • Organic Vapor Phase Deposition (OVPD) equipment enables the accurate and simultaneous control of deposition rates of multiple materials as well as their homogenous mixing in the gas phase. Graded or even cross-faded layers by varying carrier gas flow are options to improve OLED performances. As example, we will show how the efficacies of standard red phosphorescent OLEDs with sharp interfaces can be increased from 18.8 cd/A and 14.1 lm/W (1,000 cd/$m^2$) to 36.5 cd/A (+94 %, 18 % EQE) and 33.7 lm/W (+139 %) by the introduction of cross-fading, which is a controlled composition variation in the organic film.

  • PDF

바닥재의 확산계수 및 분배계수 산정 (The Determination of Diffusion and Partition Coefficients of Indoor Bottom Finishing Materials)

  • 박진수;;김신도;윤중섭
    • 한국환경보건학회지
    • /
    • 제34권3호
    • /
    • pp.219-225
    • /
    • 2008
  • Many building materials may contain high concentrations of volatile organic compounds (VOCs) and other hazardous pollutants(HAPs). Specifically, VOCs discharged by indoor building material may cause "new house" syndrome, atopic dermatitis etc. The diffusion coefficient and initially contained total VOC quantity were determined using microbalance experiments and small chamber tests. Interactions between volatile organic compounds (VOCs) and vinyl flooring (VF), a relatively homogenous, diffusion-controlled building material, were characterized. Rapid determination of the material/air partition coefficient (K) and the material-phase diffusion coefficient (D) for each VOC was achieved by placing thin VF slabs in a dynamic microbalance and subjecting them to controlled sorption/desorption cycles. K and D are shown to be independent of concentration for all of the VOCs and water vapor. This approach can be applied to other diffusion-controlled materials and should facilitate the prediction of their source/sink behavior using physically-based models.