• Title/Summary/Keyword: homogeneous structures

Search Result 318, Processing Time 0.026 seconds

Nonlinear Finite Element-Boundary Element Analysis of Multi-Layered Structural Systems (유한요소와 경계요소의 조합에 의한 다층 구조계의 비선형 해석)

  • 김문겸;허택녕;이상도
    • Computational Structural Engineering
    • /
    • v.7 no.4
    • /
    • pp.57-67
    • /
    • 1994
  • It is usual that underground structures are constructed within a multi-layered medium. In this paper, an efficient numerical modelling of multi-layered structural systems is studied using coupled analysis of finite elements and boundary elements. The finite elements are applied to the area in which the material nonlinearity dominates, and the boundary elements are applied to the far field where the nonlinearity is relatively weak. In the boundary element modelling of the multi-layered medium, fundamental solutions are not readily available. Thus, methods which can utilize existing Kelvin solutions are sought for the interior multi-layered domain problem. The interior domain problem which has piecewise homogeneous layers is analyzed using boundary elements with Kelvin solution, by discretizing each homogeneous subdomain and enforcing compatibility and equilibrium conditions between interfaces. Developed methodology is verified by comparing its results with those from the finite element analysis and it is concluded that coupled analysis using boundary elements and finite elements can be reasonable and efficient.

  • PDF

Ultrastructure of the Submandibular Gland in the Korean Spider Shrew, Sorex caecutiens (뒤쥐, Sorex caecutiens 악하선의 미세구조)

  • Jeong, Soon-Jeong;Yoo, Ji-Yun;Jeong, Moon-Jin
    • Applied Microscopy
    • /
    • v.37 no.2
    • /
    • pp.103-109
    • /
    • 2007
  • The ultrastructure of submandibular gland was examined in the Korean spider shrew, Sorex caecutiens. The submandibular gland wat composed of acini and salivary ducts. A submadibular acinus was a mixed gland having serous demilune cells and mucous cells that were filled with well developed rER, mitochondria and large amount of dense secretory granules. Serous acinar granules were oval shape without distinct limiting membrane on the border and it had only coarse specks with various density. Mucous acinar granules were oval shape without distinct limiting membrane and had a variety pattern with several thin or transparent bands into the homogeneous dense matrix. Thus submandibular acinar granules of S. caecutiens belonging to subfamily Soricinae were distinct from the other mammalian species including Crocidurinae, because of the absence of limiting membrane of acinar granules and specific pattern of mucous acinar granules. Granular duct cells had large amount of small granular vesicles and several characteristic structures of granule which were revered with stratified limiting membranes and filled with coarse serous-like granule or homogeneous matrix.

Free vibration of various types of FGP sandwich plates with variation in porosity distribution

  • Aicha Kablia;Rabia Benferhat;Tahar Hassaine Daouadji;Rabahi Abderezak
    • Structural Engineering and Mechanics
    • /
    • v.85 no.1
    • /
    • pp.1-14
    • /
    • 2023
  • The use of functionally graded materials in applications involving severe thermal gradients is quickly gaining acceptance in the composite mechanics community, the aerospace and aircraft industry. In the present study, a refined sandwich plate model is applied to study the free vibration analysis of porous functionally graded material (FGM) sandwich plates with various distribution rate of porosity. Two types of common FG sandwich plates are considered. The first sandwich plate is composed of two FG material (FGM) face sheets and a homogeneous ceramic or metal core. The second one consists of two homogeneous fully metal and ceramic face sheets at the top and bottom, respectively, and a FGM core. The displacement field of the present theory is chosen based on nonlinear variations in the in-plane displacements through the thickness of the sandwich plate. The number of unknowns and equations of motion of the present theory is reduced and hence makes them simple to use. In the analysis, the equation of motion for simply supported sandwich plates is obtained using Hamilton's principle. In order to present the effect of the variation of the porosity distribution on the dynamic behavior of the FGM sandwich plates, new mixtures are proposed which take into account different rate of porosity distribution between the ceramic and the metal. The present method is applicable to study the dynamic behavior of FGM plates and sandwich plates. The frequencies of two kinds of FGM sandwich structures are analyzed and discussed. Several numerical results have been compared with the ones available in the literature.

Investigation of the mechanical behavior of functionally graded sandwich thick beams

  • Mouaici, Fethi;Bouadi, Abed;Bendaida, Mohamed;Draiche, Kada;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Tounsi, Abdelouahed;Ghazwani, Mofareh Hassan;Alnujaie, Ali
    • Steel and Composite Structures
    • /
    • v.44 no.5
    • /
    • pp.721-740
    • /
    • 2022
  • In this paper, an accurate kinematic model has been developed to study the mechanical response of functionally graded (FG) sandwich beams, mainly covering the bending, buckling and free vibration problems. The studied structure with homogeneous hardcore and softcore is considered to be simply supported in the edges. The present model uses a new refined shear deformation beam theory (RSDBT) in which the displacement field is improved over the other existing high-order shear deformation beam theories (HSDBTs). The present model provides good accuracy and considers a nonlinear transverse shear deformation shape function, since it is constructed with only two unknown variables as the Euler-Bernoulli beam theory but complies with the shear stress-free boundary conditions on the upper and lower surfaces of the beam without employing shear correction factors. The sandwich beams are composed of two FG skins and a homogeneous core wherein the material properties of the skins are assumed to vary gradually and continuously in the thickness direction according to the power-law distribution of volume fraction of the constituents. The governing equations are drawn by implementing Hamilton's principle and solved by means of the Navier's technique. Numerical computations in the non-dimensional terms of transverse displacement, stresses, critical buckling load and natural frequencies obtained by using the proposed model are compared with those predicted by other beam theories to confirm the performance of the proposed theory and to verify the accuracy of the kinematic model.

Analysis of Drainage Structure Based on the Geometric Characteristics of Drainage Density and Source-Basin (배수밀도와 수원유역의 기하학적 특성을 기반으로 한 배수구조에 대한 해석)

  • Kim, Joo-Cheol;Kim, Jae-Han
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.5
    • /
    • pp.373-382
    • /
    • 2007
  • The exact resolution of channel initiation points is not so easy because of the dynamic behaviors of water movement on the hillslope. To this end, Kim, Joocheol and Kim, Jaehan(2007) have represented the channel network in real world basins for slope-area regimes using DEM. This study is its sequential content and then proposes the reliabilities of the hypothetical channel networks identified from DEM, which are assessed based on the geometric characteristics of drainage density and source-basin. The resulting drainage structures on the natural basin can be found to be depicted remarkably depending on the hypothetical channel network applied by slop-area threshold criterion. In addition, it is shown that there is a wonderful geometric similarity between the shapes of source- basin in a geomorphologically homogeneous region. Area threshold criterion could have restricted the shape of source-basin, so that it might bring about the incorrect drainage structures. But the hypothetical channel networks identified from DEM deserves special emphasis on expressing the space-filling structures nonetheless.

Thermal stresses and deflections of functionally graded sandwich plates using a new refined hyperbolic shear deformation theory

  • Bouchafa, Ali;Bouiadjra, Mohamed Bachir;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.18 no.6
    • /
    • pp.1493-1515
    • /
    • 2015
  • A new refined hyperbolic shear deformation theory (RHSDT), which involves only four unknown functions as against five in case of other shear deformation theories, is presented for the thermoelastic bending analysis of functionally graded sandwich plates. Unlike any other theory, the number of unknown functions involved is only four, as against five in case of other shear deformation theories. The theory presented is variationally consistent, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. The sandwich plate faces are assumed to have isotropic, two-constituent material distribution through the thickness, and the modulus of elasticity, Poisson's ratio of the faces, and thermal expansion coefficients are assumed to vary according to a power law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic ceramic material. Several kinds of sandwich plates are used taking into account the symmetry of the plate and the thickness of each layer. The influences played by the transverse shear deformation, thermal load, plate aspect ratio and volume fraction distribution are studied. Numerical results for deflections and stresses of functionally graded metal-ceramic plates are investigated. It can be concluded that the proposed theory is accurate and simple in solving the thermoelastic bending behavior of functionally graded plates.

Investigation of crossflow features of a slender delta wing

  • Tasci, Mehmet O.;Karasu, Ilyas;Sahin, Besir;Akilli, Huseyin
    • Wind and Structures
    • /
    • v.31 no.3
    • /
    • pp.229-240
    • /
    • 2020
  • In the present work, the main features of primary vortices and the vorticity concentrations downstream of vortex bursting in crossflow plane of a delta wing with a sweep angle of Λ=70° were investigated under the variation of the sideslip angles, β. For the pre-review of flow structures, dye visualization was conducted. In connection with a qualitative observation, a quantitative flow analysis was performed by employing Particle Image Velocimetry (PIV). The sideslip angles, β were varied with four different angles, such as 0°, 4°, 12°, and 20° while angles of attack, α were altered between 25° and 35°. This study mainly focused on the instantaneous flow features sequentially located at different crossflow planes such as x/C=0.6, 0.8 and 1.0. As a summary, time-averaged and instantaneous non-uniformity of turbulent flow structures are altered considerably resulting in non-homogeneous delta wing surface loading as a function of the sideslip angle. The vortex bursting location on the windward side of the delta wing advances towards the leading-edge point of the delta wing. The trajectory of the primary vortex on the leeward side slides towards sideways along the span of the delta wing. Besides, the uniformity of the lift coefficient, CL over the delta wing plane was severely affected due to unbalanced distribution of buffet loading over the same plane caused by the variation of the sideslip angle, β. Consequently, dissimilarities of the leading-edge vortices result in deterioration of the mean value of the lift coefficient, CL.

Warping and porosity effects on the mechanical response of FG-Beams on non-homogeneous foundations via a Quasi-3D HSDT

  • Mokhtar Nebab;Hassen Ait Atmane;Riadh Bennai;Mouloud Dahmane
    • Structural Engineering and Mechanics
    • /
    • v.90 no.1
    • /
    • pp.83-96
    • /
    • 2024
  • This paper suggests an analytical approach to investigate the free vibration and stability of functionally graded (FG) beams with both perfect and imperfect characteristics using a quasi-3D higher-order shear deformation theory (HSDT) with stretching effect. The study specifically focuses on FG beams resting on variable elastic foundations. In contrast to other shear deformation theories, this particular theory employs only four unknown functions instead of five. Moreover, this theory satisfies the boundary conditions of zero tension on the beam surfaces and facilitates hyperbolic distributions of transverse shear stresses without the necessity of shear correction factors. The elastic medium in consideration assumes the presence of two parameters, specifically Winkler-Pasternak foundations. The Winkler parameter exhibits variable variations in the longitudinal direction, including linear, parabolic, sinusoidal, cosine, exponential, and uniform, while the Pasternak parameter remains constant. The effective material characteristics of the functionally graded (FG) beam are assumed to follow a straightforward power-law distribution along the thickness direction. Additionally, the investigation of porosity includes the consideration of four different types of porosity distribution patterns, allowing for a comprehensive examination of its influence on the behavior of the beam. Using the virtual work principle, equations of motion are derived and solved analytically using Navier's method for simply supported FG beams. The accuracy is verified through comparisons with literature results. Parametric studies explore the impact of different parameters on free vibration and buckling behavior, demonstrating the theory's correctness and simplicity.

Electron Microscopic Study on the Mast Cells of the Vertebrates(Mammals) Stomach (척추동물(脊椎動物)(포유류(哺乳類))위(胃)의 비만세포(肥滿細胞)에 관한 전자현미경적 연구)

  • Kang Ho-Suck;Kim Chang-Whan
    • Applied Microscopy
    • /
    • v.11 no.1
    • /
    • pp.39-50
    • /
    • 1981
  • An electron microscopical observation was carried out to compare the general shape of the mast cells and structures of granules inside the cells in the stomach of 5 species in 3 orders of Mammals. In convenience, the granules in the cytoplasm were abbreviated as follows: 1) Homogeneous granule, GR1 2) Particulate granule, GR2 a. Dark dense particulate granule, GR2-1 b. Less dense particulate granule, GR2-2 3) Reticular granule, GR5 a. Dark dense reticular granule, GR5-1 b. Light dense reticular granule, GR5-2 In Mammalia including goat, dog, cat, and hamster, most of cytoplasmic organelle were Golgi apparatus and mitochondria, and most of the cytoplasmic granules were highly densed GR1and GR2. However GR5-1 and GR5-2 appeared in guinea pig while one side sunken or crescent-like types occured in both dog and guinea pig. All mast cells were oval or spindle with cytoplasmic processes around the cell. There was also found vacuoles and vesicles in these cells. These results demonstrated that there was a morphological difference between species of vertebrate in the mast cells and their cytoplasmic granules. It was also suggested that a variety of structures of granules were closely related with the composition (histamine, heparin, serotonin, hyaluronic acid etc.) and mature of the granules.

  • PDF

Research on the Variation of Deposition & Accumulation on the Shorelines using Ortho Areial Photos (수치항공사진을 이용한 해안선 침퇴적변화에 관한 연구)

  • Choi, Chul-Uong;Lee, Chang-Hun;Oh, Che-Young;Son, Jung-Woo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.3
    • /
    • pp.23-31
    • /
    • 2009
  • The border of the shorelines in a nation is an important factor in determining the border of a national territory, but Korea's shorelines are rapidly changing due to the recent rise in sea level from global warming and growth-centered economic policy over the decades of years. This research was done centering on the areas having well-preserved shorelines as they naturally are and other areas having damaged shorelines in their vicinities due to artificial structures at the two beaches located at the neighboring areas and having mutually homogeneous ocean conditions with each other. First, this research derived the shorelines using the aerial photographies taken from 1947 until 2007 and revised the tidal levels sounding data obtained from a hydrographical survey automation system consisting of Echosounder[Echotrac 3100] and Differential Global Positioning System[Beacon]by using topographical data and ships on land obtained by applying post-processing Kinematic GPS measuring method. In addition, this research evaluated the changes and dimensional variations for the last 60 years by dividing these determined shorelines into 5 sections. As a result, the Haewundae Beach showed a total of 29% decrease rate in dimension as of the year 2007 in comparison with the year 1947 due to a rapid dimensional decline centering on its west areas, while the dimension of the Gwanganri Beach showed an increase in its dimension amounting to a total of 69% due to the decrease in flow velocity by artificial structures built on both ends of the beach-forming accumulation; thus, it was found that there existed a big difference in deposition & accumulation tendency depending on neighboring environment in spite of the homogeneous ocean conditions.

  • PDF