• Title/Summary/Keyword: homogeneous region

Search Result 331, Processing Time 0.025 seconds

A High Image Compression for Computer Storage and Communication

  • Jang, Jong-Whan
    • The Journal of Natural Sciences
    • /
    • v.4
    • /
    • pp.191-220
    • /
    • 1991
  • A new texture segmentation-based image coding technique which performs segmentation based on roughness of textural regions and properties of the human visual system (HVS) is presented. This method solves the problems of a segmentation-based image coding technique with constant segments by proposing a methodology for segmenting an image texturally homogeneous regions with respect to the degree of roughness as perceived by the HVS. The fractal dimension is used to measure the roughness of the textural regions. The segmentation is accomplished by thresholding the fractal dimension so that textural regions are classified into three texture classes; perceived constant intensity, smooth texture, and rough texture. An image coding system with high compression and good image quality is achieved by developing an efficient coding technique for each segment boundary and each texture class. For the boundaries, a binary image representing all the boundaries is created. For regions belonging to perceived constant intensity, only the mean intensity values need to be transmitted. The smooth and rough texture regions are modeled first using polynomial functions, so only the coefficients characterizing the polynomial functions need to be transmitted. The bounda-ries, the means and the polynomial functions are then each encoded using an errorless coding scheme. Good quality reconstructed images are obtained with about 0.08 to 0.3 bit per pixel for three different types of imagery ; a head and shoulder image with little texture variation, a complex image with many edges, and a natural outdoor image with highly textured areas.

  • PDF

Dispersion Properties and Photocatalytic Activities of TiO2 Powders Obtained by Homogeneous Precipitation Process at Low Temperature in a Acrylic Resin (저온균일침전법으로 제조된 TiO2 분말의 아크릴레진에서의 분산특성 및 광분해 효과)

  • Woo S. H.;Kim W. W.;Rhee C. K.
    • Journal of Powder Materials
    • /
    • v.11 no.6 s.47
    • /
    • pp.503-509
    • /
    • 2004
  • Dispersion stabilities and photocatalytic activities of rutile $TiO_{2}$ powders with unique nano-structure synthesized by homogeneous precipitation process at low temperature(HPPLT) have been investigated in the acrylic resin containing fluorostyrene in the range of 0~0.16 mole. Isoelectric point of $TiO_{2}$ in the acrylic resin placed in the neutral region whereas that of $TiO_{2}$ in the water placed in the acidic region, indicating that zeta potential and agglomeration of $TiO_{2}$ powder is strongly dependent on the pH and the type of solvent. To prepare an adhesion, an acrylic resin containing fluorostyrene was synthesized by a radical polymerization. The adhesion of coating layer was increased with increasing fluorostyrene's contents without changing the dispersion stabilities and degrading photocatalytic properties.

조영제 사용 전${\cdot}$후 불균질 조직 보정 알고리즘에 따른 선량변화에 대한 연구

  • Kim, Ju-Ho;Jo, Jeong-Hui;Lee, Seok;Jeon, Byeong-Cheol;Park, Jae-Il
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.13 no.1
    • /
    • pp.38-46
    • /
    • 2001
  • Purpose : The aim of this study is to investigate the effect of tissue inhomogeneities when appling to contrast medium among Homogeneous, Batho and ETAR dose calculation method in RTP system. Method and Material : We made customized heterogeneous phantom it filled with water or contrast medium slab. Phantom scan data have taken PQ 5000 (CT scanner, Marconi, USA) and then dose was calculated in 3D RTP (AcQ-Plan, Marconi, USA) depends on dose calculation algorithm (Homogeneous, Batho, ETAR). The dose comparisons were described in terms of 2D isodose distribution, percent depth dose data, effective path length and monitor unit. Also dose distributions were calculated with homogeneous and inhomogeneous correction algorithm, Batho and ETAR, in each patients with different clinical sites. Results : Result indicated that Batho and ETAR method gave rise to percent depth dose deviation $1.5{\sim}2.7\%,\;2.3{\sim}3.5\%$ (6MV, field size $10{\times}10cm^2$) in each status with and without contrast medium. Also show that effective path lengths were more increase in contrast status (23.14 cm) than Non-contrast (22.07 cm) about $4.9\%$ or 10.7 mm (In case Hounsfield Unit 270) and these results were similary showned in each patient with different clinical site that was lung. prostate, liver and brain region. Concliusion : In conclusion we shown that the use of inhomogeneity correction algorithm for dose calculation in status of injected contrast medium can not represent exact dose at GTV region. These results mean that patients will be more irradiated photon beam during radiation therapy.

  • PDF

Operation characteristics of partial oxidation reformer for transportation fuels (수송 연료용 부분산화 개질기의 운전특성)

  • Lee, Sangho;Bae, Joongmyeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.159.1-159.1
    • /
    • 2011
  • Partial oxidation reformer was fabricated and operated using commercial transportation fuels. Fuel injector and heating coil were used for fuel atomization and startup, respectively. The reformer was designed to produce syngas for $150{\sim}200W_e$ class solid oxide fuel cell. The reformer was operated in the $O_2$/C range between 0.6 and 0.8 while the capacity was fixed at $150W_e$. The temperature range in catalyst bed was between $500^{\circ}C$ and $900^{\circ}C$. Only 83% fuel was converted to $H_2$, CO, $CO_2$ and $CH_4$ at the operating conditions. The lowest temperature increase to $700^{\circ}C$ when the reformer was operated at $200W_e$, Although the temperature profiles was improved, fuel conversion was 88%. On the other hand, fuel was completely converted when micro-reactor operated at the same condition. This difference maybe due to aromatic compounds formation at homogeneous region. In addition, a significant amount of coke deposition was observed at vent line. Homogeneous reaction depends on the degree of mixing. For this purpose, two fluid nozzle and Ultra sonic injector were compared to investigate the effect of atomization. Sauter mean diameter(SMD) of Ultra sonic injector was lower than two-fluid nozzle at test condition. However, conversion efficiency and fuel conversion were not improved by using two-fluid nozzle. these results imply that the temperature of homogeneous reaction region should be controlled to prevent coke formation.

  • PDF

Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM

  • Yaylaci, Murat;Adiyaman, Gokhan;Oner, Erdal;Birinci, Ahmet
    • Computers and Concrete
    • /
    • v.27 no.3
    • /
    • pp.199-210
    • /
    • 2021
  • The aim of this paper was to examine the continuous and discontinuous contact problems between the functionally graded (FG) layer pressed with a uniformly distributed load and homogeneous half plane using an analytical method and FEM. The FG layer is made of non-homogeneous material with an isotropic stress-strain law with exponentially varying properties. It is assumed that the contact at the FG layer-half plane interface is frictionless, and only the normal tractions can be transmitted along the contacted regions. The body force of the FG layer is considered in the study. The FG layer was positioned on the homogeneous half plane without any bonds. Thus, if the external load was smaller than a certain critical value, the contact between the FG layer and half plane would be continuous. However, when the external load exceeded the critical value, there was a separation between the FG layer and half plane on the finite region, as discontinuous contact. Therefore, there have been some steps taken in this study. Firstly, an analytical solution for continuous and discontinuous contact cases of the problem has been realized using the theory of elasticity and Fourier integral transform techniques. Then, the problem modeled and two-dimensional analysis was carried out by using ANSYS package program based on FEM. Numerical results for initial separation distance and contact stress distributions between the FG layer and homogeneous half plane for continuous contact case; the start and end points of separation and contact stress distributions between the FG layer and homogeneous half plane for discontinuous contact case were provided for various dimensionless quantities including material inhomogeneity, distributed load width, the shear module ratio and load factor for both methods. The results obtained using FEM were compared with the results found using analytical formulation. It was found that the results obtained from analytical formulation were in perfect agreement with the FEM study.

Fabrication of Graded-Boundary Ni/Steel Material by Laser Beam (레이저빔에 의한 조성구배계면 Ni/Steel 재료의 제조)

  • 안재모;김도훈
    • Laser Solutions
    • /
    • v.2 no.1
    • /
    • pp.22-29
    • /
    • 1999
  • This work was carried out as a fundamental experiment to fabricate a Graded-Boundary Ni/Steel material using a laser beam. A Ni sheet was placed on a steel substrate, and then a series of high power $CO_2$ laser beams were irradiated on the surface in order to produce a homogeneous alloyed layer. The processing parameters were : 4 ㎾ laser power, 2m/min traverse speeds, -2mm defocuing, 17 l/min sheiding gas flow rates. The sequential repetition of the laser surface alloying treatment up to 4 times, resulted in about 5mm thick of fair compositional gradient systems. In order to determine the microstructure, phase and compositional profiles in this material, optical microscopy, XRD and EDS were used. The compositions varied from 66% to 0% for Ni and 34% to 100% for Fe in this material The microstructures were typical morphologies of rapid solidification and solid-state cooling. Since compressive stress was formed in the heat affected region due to martensitic transformation, while relative tensile stress was developed in the alloyed region, cracks were formed between the alloyed region and the substrate region.

  • PDF

A study on the change of turbulence structure in a diffuser (확대관의 난류구조 변동에 관한 연구)

  • Lee, Jang-Hwan;Han,Yong-Un
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.503-508
    • /
    • 1997
  • The change of the structure of homogeneous turbulence subject to irrotational strains has been studied in an anti-Morel type diffuser (center matched cubic contour) using the hot wire anemometry. It was observed that the profiles of mean velocities and turbulence velocities along the center line were stable at the entrance region but rapidly changed near the matching point. The wall induced turbulence at the entrance region grows fast and was diffused toward the center at downstream. It was also observed that the axial turbulence grows faster than the radial one in the middle region of the diffusing flow and that the diffusing process has the vortex compression mechanism due to the conservation of angular momentum. These phenomena are frequently observed at the initial flow region of the free jet.

Deformation and crystallization of Cu-base BMG alloy in the supercooled liquid region (과냉각 액상 구간에서 Cu-based BMG 합금의 결정화와 변형 거동)

  • Park, E.S.;Lee, J.H.;Kim, H.J.;Bae, J.C.;Huh, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.143-145
    • /
    • 2007
  • The correlation between crystallization and deformation behavior in the supercooled liquid region (SLR) of a $Cu_{54}Ni_{6}Zr_{22}Ti_{18}$ bulk metallic glass (BMG) alloy is investigated by compression tests, differential scanning calorimetry (DSC), electron energy loss spectrometry (EELS) and high resolution transmission electron microscopy (HRTEM). In the SLR, This BMG alloy was strongly depended on the deformation temperature and the alloy exhibits important change in deformation behavior after a given time which is directly connected to the development of crystallization. Compressive stress impeded decomposition and consequently retarded forming of nano-crystal, which led to enlarge the homogeneous deformation region of the BMG alloy in SLR during compression test.

  • PDF

The Influence of Global Sea Surface Temperature Anomalies on Droughts in the East Asia Monsoon Region

  • Awan, Jehangir Ashraf;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.224-224
    • /
    • 2015
  • The East Asia monsoon is one of the most complex atmospheric phenomena caused by Land-Sea thermal contrast. It plays essential role in fulfilling the water needs of the region but also poses stern consequences in terms of flooding and droughts. This study analyzed the influence of Global Sea Surface Temperature Anomalies (SSTA) on occurrence of droughts in the East Asia monsoon region ($20^{\circ}N-50^{\circ}N$, $103^{\circ}E-149^{\circ}E$). Standardized Precipitation Index (SPI) was employed to characterize the droughts over the region using 30-year (1978-2007) gridded rainfall dataset at $0.5^{\circ}$ grid resolution. Due to high variability in intensity and spatial extent of monsoon rainfall the East Asia monsoon region was divided into the homogeneous rainfall zones using cluster analysis method. Seven zones were delineated that showed unique rainfall regimes over the region. The influence of SSTA was assessed by using lagged-correlation between global gridded SSTA ($0.2^{\circ}$ grid resolution) and SPI of each zone. Sea regions with potential influence on droughts in different zones were identified based on significant positive and negative correlation between SSTA and SPI with a lag period of 3-month. The results showed that SSTA have the potential to be used as predictor variables for prediction of droughts with a reasonable lead time. The findings of this study will assist to improve the drought prediction over the region.

  • PDF

Flame and Combustion Characteristics of D.I. HCCI Diesel Engine using a Visualization Engine (가시화 엔진을 이용한 직분식 예혼합 압축착화 디젤엔진의 화염 및 연소특성)

  • 권오영;류재덕;이기형;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.100-107
    • /
    • 2002
  • Combustion characteristics of diesel engine depends on mixture formation process during Ignition delay and premixed flame region. Fuel and air mixture formation has a great influence on the exhaust emission. Therefore, the present study focused on the combustion mechanism of Homogeneous Charge Compression Ignition (HCCI) engine. This study was carried out to investigate the combustion characteristics of direct injection type HCCI engine using a visualization engine. To investigate the combustion characteristics, we measured cylinder pressure and calculated heat release rate. In addition, we investigated the flame development process by using visualization engine system. From the experimental result of HCCI engine, we observed that cool flame was always appeared in HCCI combustion and magnitude of cool flame was proportional to magnitude of hot flame. And we also found that fuel injection timing is more effective to increase lean homogeneous combustion performance than intake air temperature. Since increasing the intake air temperature improved fuel vaporization before the fuel atomizes, we concluded that increasing the temperature has disadvantage fur homogeneous premixed combustion.