• 제목/요약/키워드: homogeneous reaction

검색결과 333건 처리시간 0.025초

천연가스로부터 수소를 생산하기 위한 수증기 개질기의 작동조건과 형상에 대한 수치해석 연구 (Numerical Study on Operating Parameters and Shapes of a Steam Reformer for Hydrogen Production from Methane)

  • 박준근;이신구;임성광;배중면
    • 대한기계학회논문집B
    • /
    • 제33권1호
    • /
    • pp.60-68
    • /
    • 2009
  • The steam reformer for hydrogen production from methane is studied by a numerical method. Langmuir- Hinshelwood model is incorporated for catalytic surface reactions, and the pseudo-homogeneous model is used to take into account local equilibrium phenomena between a catalyst and bulk gas. Dominant chemical reactions are Steam Reforming (SR) reaction, Water-Gas Shift (WGS) reaction, and Direct Steam Reforming (DSR) reaction. The numerical results are validated with experimental results at the same operating conditions. Using the validated code, parametric study has been numerically performed in view of the steam reformer performance. As increasing a wall temperature, the fuel conversion increases due to the high heat transfer rate. When Steam to Carbon Ratio (SCR) increases, the concentration of carbon monoxide decreases since WGS reaction becomes more active. When increasing Gas Hourly Space Velocity (GHSV), the fuel conversion decreases due to the heat transfer limitation and the low residence time. The reactor shape effects are also investigated. The length and radius of cylindrical reactors are changed at the same catalyst volume. The longer steam reformer is, the better steam reformer performs. However, system energy efficiency decreases due to the large pressure drop.

Hyperbolic Reaction-Diffusion Equation for a Reversible Brusselator: Solution by a Spectral Method

  • 이일희;김광연;조웅인
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권1호
    • /
    • pp.35-41
    • /
    • 1999
  • Stability characteristics of hyperbolic reaction-diffusion equations with a reversible Brusselator model are investigated as an extension of the previous work. Intensive stability analysis is performed for three important parameters, Nrd, β and Dx, where Nrd is the reaction-diffusion number which is a measure of hyperbolicity, β is a measure of reversibility of autocatalytic reaction and Dx is a diffusion coefficient of intermediate X. Especially, the dependence on Nrd of stability exhibits some interesting features, such as hyperbolicity in the small Nrd region and parabolicity in the large Nrd region. The hyperbolic reaction-diffusion equations are solved numerically by a spectral method which is modified and adjusted to hyperbolic partial differential equations. The numerical method gives good accuracy and efficiency even in a stiff region in the case of small Nrd, and it can be extended to a two-dimensional system. Four types of solution, spatially homogeneous, spatially oscillatory, spatio-temporally oscillatory and chaotic can be obtained. Entropy productions for reaction are also calculated to get some crucial information related to the bifurcation of the system. At the bifurcation point, entropy production changes discontinuously and it shows that different structures of the system have different modes in the dissipative process required to maintain the structure of the system. But it appears that magnitude of entropy production in each structure give no important information related for states of system itself.

TREATMENT OF PHENOL CONTAINED IN WASTE WATER USING THE HETEROGENIZED FENTON SYSTEM

  • Kim, Seong-Bo
    • Environmental Engineering Research
    • /
    • 제12권1호
    • /
    • pp.30-35
    • /
    • 2007
  • Fenton system using homogeneous iron catalyst is very powerful in the degradation of organic compounds, but has a disadvantage to remove Fe ions from water after wastewater treatment. Thus, iron catalyst was bounded to support such as inorganic and polymer materials. The PVP supporting iron catalyst showed a good catalytic performance in degradation of phenol contained in waste water and iron catalyst supported on ${SO_4}^{2-}$ type PVP (KEX 511) showed the best catalytic performance. Also, reaction kinetic study was carried out in this system. Reaction constants on various catalysts was obtained from the pseudo first order equation. Reaction rate constants with the heterogenized $FeCl_2/PVP$ catalyst is a three-fold smaller than that of $FeCl_2$ catalyst.

Modelling of the effects of alkali-aggregate reaction in reinforced concrete structures

  • Pietruszczak, S.;Ushaksaraei, R.;Gocevski, V.
    • Computers and Concrete
    • /
    • 제12권5호
    • /
    • pp.627-650
    • /
    • 2013
  • This paper deals with application of a non-linear continuum model for reinforced concrete affected by alkali-aggregate reaction (AAR) to analysis of some nuclear structures. The macroscopic behaviour of the material affected by AAR is described by incorporating a homogenization/averaging procedure. The formulation addresses the main stages of the deformation process, i.e., a homogeneous deformation mode as well as that involving localized deformation, associated with formation of macrocracks. The formulation is applied to examine the mechanical behaviour of some reinforced concrete structures in nuclear power facilities located in Quebec (Canada). First, a containment structure is analyzed subjected to 45 years of continuing AAR. Later, an inelastic analysis is carried out for the spent fuel pool taking into account the interaction with the adjacent jointed rock mass foundation. In the latter case, the structure is said to be subjected to continuing AAR that is followed by a seismic event.

Ti-Al-C 합금의 고온 자전 합성 반응시 생성상에 관한 연구 (A Study on the Formation Phase of Self-propagating High-temperature Synthesis of Ti-Al-C alloys)

  • 문종태
    • 한국분말재료학회지
    • /
    • 제2권2호
    • /
    • pp.149-157
    • /
    • 1995
  • In this study, an attempt was made to fabricate TiAl as well as its in situ composite via combustion synthesis. The processing variable of the combustion synthesis which include aluminum content and the heating rate were found to affect the combustion temperature. The combustion temperature measured, however, was lower than the melting temperature of TiAl and the reaction product were found to include incomplet reaction products. Carbon was added in order to increase the combustion temperature as well as to form in situ reinforcements. The reaction products showed homogeneous microstructures with carbide phases formed within indicating that the addition of carbon increased the combustion temperature above the melting temperature of TiAl.

  • PDF

Electrochemical Removal Efficiency of Pollutants on ACF Electrodes

  • Oh, Won-Chun;Park, Joung-Sung;Lee, Ho-Jin;Yum, Min-Hyung
    • Carbon letters
    • /
    • 제5권4호
    • /
    • pp.191-196
    • /
    • 2004
  • The electrochemical removal (ECR) of water pollutants by activated carbon fiber (ACF) electrodes from wastewater was investigated over wide range of electrochemical reaction time. The ECR capacities of ACF electrodes were associated with their internal porosity and were related to physical properties and to reaction time. And, surface morphologies and elemental analysis for the ACFs after electrochemical reaction are investigated by SEM and EDX to explain the changes in adsorption properties. The FT-IR spectra of ACFs for the investigation of functional groups show that the electrochemical treatment is consequently associated with the homogeneous removal of pollutants with the increasing surface reactivity of the activated carbon fiber surfaces. The ACFs were electrochemically reacted to waste water to investigate the removal efficiency for the COD, T-N and T-P. From these removal results of pollutants using ACFs substrate, satisfactory removal performance was obtained. The outstanding removal effects of the ACFs substrate were determined by the properties of the material for adsorption and trapping of organics, and catalytic effects.

  • PDF

DME 예혼합 자기착화 연소중의 디젤분무연소에 관한 연구 (The Investigation of Diesel Spray Combustion in DME HCCI Combustion)

  • 임옥택
    • 대한기계학회논문집B
    • /
    • 제32권4호
    • /
    • pp.241-248
    • /
    • 2008
  • The purpose of the research is to investigate of diesel spray combustion for simultaneously reduction way of NOx and PM. The diesel injection were done into intermediates that are generated by very lean DME HCCI combustion using a RCM. The concentration of intermediate could not be directly measured, so we estimated it by CHEMKIN calculation. Two dimensional spontaneous luminescence images which are created by chemical species reaction at low temperature reaction (LTR) and high temperature reaction (HTR) are captured by using a framing streak camera. Also, combustion events were observed by high-speed direct photography. The ignition and combustion events were analyzed by pressure profiles and the KL values and flame temperatures were analyzed by the two-color method.

POSITIVE SOLUTIONS OF A REACTION-DIFFUSION SYSTEM WITH DIRICHLET BOUNDARY CONDITION

  • Ma, Zhan-Ping;Yao, Shao-Wen
    • 대한수학회보
    • /
    • 제57권3호
    • /
    • pp.677-690
    • /
    • 2020
  • In this article, we study a reaction-diffusion system with homogeneous Dirichlet boundary conditions, which describing a three-species food chain model. Under some conditions, the predator-prey subsystem (u1 ≡ 0) has a unique positive solution (${\bar{u_2}}$, ${\bar{u_3}}$). By using the birth rate of the prey r1 as a bifurcation parameter, a connected set of positive solutions of our system bifurcating from semi-trivial solution set (r1, (0, ${\bar{u_2}}$, ${\bar{u_3}}$)) is obtained. Results are obtained by the use of degree theory in cones and sub and super solution techniques.

Morphologically Controlled Growth of Aluminum Nitride Nanostructures by the Carbothermal Reduction and Nitridation Method

  • Jung, Woo-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권7호
    • /
    • pp.1563-1566
    • /
    • 2009
  • One-dimensional aluminum nitride (AlN) nanostructures were synthesized by calcining an Al(OH)(succinate) complex, which contained a very small amount of iron as a catalyst, under a mixed gas flow of nitrogen and CO (1 vol%). The complex decomposed into a homogeneous mixture of alumina and carbon at the molecular level, resulting in the lowering of the formation temperature of the AlN nanostructures. The morphology of the nanostructures such as nanocone, nanoneedle, nanowire, and nanobamboo was controlled by varying the reaction conditions, including the reaction atmosphere, reaction temperature, duration time, and ramping rate. Iron droplets were observed on the tips of the AlN nanostructures, strongly supporting that the nanostructures grow through the vapor-liquid-solid mechanism. The variation in the morphology of the nanostructures was well explained in terms of the relationship between the diffusion rate of AlN vapor into the iron droplets and the growth rate of the nanostructures.

Homogeneous Catalysis (VI). Hydride Route with Chloro Ligand Dissociation for the Hydrogenation of Acrylonitrile with trans-Chlorocarbonylbis(triphenylphosphine)iridium(I)

  • Moon, Chi-Jang;Chin, Chong-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • 제4권4호
    • /
    • pp.180-183
    • /
    • 1983
  • The reaction of $IrClH_2(CO)(Ph_3P)_2$ ($Ph_3P$=triphenylphosphine) with acrylonitrile (AN) produces a stoichiometric amount of propionitrile (PN) at $100^{\circ}C$ under nitrogen, which suggests that the catalytic hydrogenation of AN to PN with $IrCl(CO)(Ph_3P)_2$ proceeds through the hydride route where the formation of the dihydrido complex, $IrClH_2(CO)(Ph_3P)_2$ is the initial step. The rate of the hydrogenation of AN to PN with $IrCl(CO)(Ph_3P)_2$ is decreased by the presence of excess $Cl^-$ in the reaction system, which suggests that $Cl^-$ is the dissociating ligand in the catalytic cycle. It has been also found that the rate of the hydrogenation increases with inercase both in hydrogen pressure and in concentration of free $Ph_3P$, and with decrease in AN concentration in the reaction system.