• 제목/요약/키워드: homogeneous reaction

검색결과 333건 처리시간 0.024초

상업적으로 프로필렌카보네이트를 제조하기 위한 공정 조건 연구 (Study on the Process Condition for Producing Propylene Carbonate in Commercial)

  • 진상현;이학범;백제범
    • 에너지공학
    • /
    • 제29권1호
    • /
    • pp.58-62
    • /
    • 2020
  • 연소 배기가스 중 온실가스의 원인이 되는 이산화탄소를 회수하여 활용하며 상업적으로도 가치가 큰 프로필렌카보네이트(Propylene Carbonate)를 합성하는 연구를 수행하였다. 상업적으로 프로필렌카보네이트 생산 적용이 가능한 균일계 유기 촉매와 반응 조건을 이용하여 pilot scale로 실험을 진행하였으며, 상업적으로 적용 가능한 최적의 촉매 및 농도, 반응 온도 및 압력등의 공정조건을 확립 할 수 있었다. 환경 친화적인 공법이며, 촉매 제조에 가격 경쟁력이 있고, 촉매는 재사용이 가능하며, 기존 대비 낮은 온도 및 압력의 반응 조건으로 95% 이상의 높은 전환율과 99%이상의 순도로 제조 가능하기에 상업적으로 충분히 적용 가능한 공정임을 확인 할 수 있었다.

산화-환원 적정 곡선 (Oxidation-Reduction Titration Curve Both Half Reactions Homogeneous in Coefficient)

  • 최규원
    • 대한화학회지
    • /
    • 제11권4호
    • /
    • pp.159-164
    • /
    • 1967
  • 균일계수 산화환원 적정에 있어서의 전위의 적정분율에 따른 변화을 나타내는 정확한 방정식을 얻었다. 이 방정식은 정정곡선이 시약의 농도에 무관계함을 알려준다. 또한 전위차적정범위 종말점의 예민도는 반전지의 기준전위의 차는 몰론, 각 반반응에 관여하는 전자수에 따라 심한 영향을 받음을 알려준다. 적정곡선의 변곡점이 당량점과 일치하지 않음을 증명하였다. 또한 적정단계에 따른 반응의 완결도를 평형상수식을 토대로 하여 해석하였다. 이 결과는 산화환원 이외의 평형에도 적용된다.

  • PDF

수송 연료용 부분산화 개질기의 운전특성 (Operation characteristics of partial oxidation reformer for transportation fuels)

  • 이상호;배중면
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.159.1-159.1
    • /
    • 2011
  • Partial oxidation reformer was fabricated and operated using commercial transportation fuels. Fuel injector and heating coil were used for fuel atomization and startup, respectively. The reformer was designed to produce syngas for $150{\sim}200W_e$ class solid oxide fuel cell. The reformer was operated in the $O_2$/C range between 0.6 and 0.8 while the capacity was fixed at $150W_e$. The temperature range in catalyst bed was between $500^{\circ}C$ and $900^{\circ}C$. Only 83% fuel was converted to $H_2$, CO, $CO_2$ and $CH_4$ at the operating conditions. The lowest temperature increase to $700^{\circ}C$ when the reformer was operated at $200W_e$, Although the temperature profiles was improved, fuel conversion was 88%. On the other hand, fuel was completely converted when micro-reactor operated at the same condition. This difference maybe due to aromatic compounds formation at homogeneous region. In addition, a significant amount of coke deposition was observed at vent line. Homogeneous reaction depends on the degree of mixing. For this purpose, two fluid nozzle and Ultra sonic injector were compared to investigate the effect of atomization. Sauter mean diameter(SMD) of Ultra sonic injector was lower than two-fluid nozzle at test condition. However, conversion efficiency and fuel conversion were not improved by using two-fluid nozzle. these results imply that the temperature of homogeneous reaction region should be controlled to prevent coke formation.

  • PDF

Nanodispersion-Strengthened Metallic Materials

  • Weissgaerber, Thomas;Sauer, Christa;Kieback, Bernd
    • 한국분말재료학회지
    • /
    • 제9권6호
    • /
    • pp.441-448
    • /
    • 2002
  • Dispersions of non-soluble ceramic particles in a metallic matrix can enhance the strength and heat resistance of materials. With the advent of mechanical alloying it became possible to put the theoretical concept into practice by incorporating very fine particles in a flirty uniform distribution into often oxidation- and corrosion- resistant metal matrices. e.g. superalloys. The present paper will give an overview about the mechanical alloying technique as a dry, high energy ball milling process for producing composite metal powders with a fine controlled microstructure. The common way is milling of a mixture of metallic and nonmetallic powders (e.g. oxides. carbides, nitrides, borides) in a high energy ball mill. The heavy mechanical deformation during milling causes also fracture of the ceramic particles to be distributed homogeneously by further milling. The mechanisms of the process are described. To obtain a homogeneous distribution of nano-sized dispersoids in a more ductile matrix (e.g. aluminium-or copper based alloys) a reaction milling is suitable. Dispersoid can be formed in a solid state reaction by introducing materials that react with the matrix either during milling or during a subsequent heat treatment. The pre-conditions for obtaining high quality materials, which require a homogeneous distribution of small dis-persoids, are: milling behaviour of the ductile phase (Al, Cu) will be improved by the additives (e.g. graphite), homogeneous introduction of the additives into the granules is possible and the additive reacts with the matrix or an alloying element to form hard particles that are inert with respect to the matrix also at elevated temperatures. The mechanism of the in-situ formation of dispersoids is described using copper-based alloys as an example. A comparison between the in-situ formation of dispersoids (TiC) in the copper matrix and the milling of Cu-TiC mixtures is given with respect to the microstructure and properties, obtained.

균일용액침전법에서 수세여부와 건조온도가 망간이 첨가된 바륨헥사알루미네이트의 제조에 미치는 영향 (Effect of Water Wash and Dry Temperature in Homogeneous Precipitation Method on the Manufacture of Mn-added Barium Hexaaluminates)

  • 박지윤;김서영;이영우
    • Korean Chemical Engineering Research
    • /
    • 제59권3호
    • /
    • pp.435-442
    • /
    • 2021
  • 요소를 이용한 균일용액침전법으로 망간이 첨가된 바륨 헥사알루미네이트를 제조하였다. 합성 후 수세 여부와 건조온도에 따른 영향을 열중량분석, X선 회절분석과 장방출 주사현미경으로 분석하였다. 수세하지 않은 여과단계만 거친 소성촉매가 수세단계를 거친 소성촉매보다 순수한 헥사알루미네이트 상을 얻을 수 있었다. 건조과정 동안 합성 후 잔존한 요소가 전구체에 탈수과정을 도와 주요 금속종인 깁사이트를 순수한 헥사알루미네이트로 변환되기 쉬운 보에마이트로 상변이에 영향을 주었다. 제조된 촉매의 메탄 연소성능 평가는 WO200이 가장 우수하였으며, 모든 촉매연소반응에서 NOx가 배출되지 않았다. 헥사알루미네이트는 최고 CO 배출량을 감소시키는데 영향을 주는 것으로 확인되었다.

Kinetics of the KOH Catalyzed-Methanolysis for Biodiesel Production from Fat of Tra Catfish

  • Huong, Le Thi Thanh;Tan, Phan Minh;Hoa, Tran Thi Viet;Lee, Soo
    • 한국응용과학기술학회지
    • /
    • 제25권4호
    • /
    • pp.418-428
    • /
    • 2008
  • Transesterification of fat of Tra catfish with methanol in the presence of the KOH catalyst yields fatty acid methyl esters (FAME) and glycerol (GL). The effects of the reaction temperature and reaction time on rate constants and kinetic order were investigated. Three regions were observed. In the initial stage, the immiscibility of the Tra fat and methanol limited the reaction rate, hence this region was controlled by the mass transfer. Subsequent to this region, produced FAME like a co-solvent made the reaction mixture homogeneous, therefore the conversion rate increased rapidly so it was controlled by the kinetic parameters of the reaction until the equilibrium was approached in the final slow region. A second-order kinetic mechanism was proposed involving second regions for the forward reaction. The rate determining step for the overall KOH catalyzed-methanolysis of Tra fat was the conversion of triglycerides (TG) to diglycerides (DG). This rate constant was increased from 0.003 to $0.019min^{-1}$ when the reaction temperature was increased from 35 to $60^{\circ}C$. Its calculated activation energy was 14.379 ($kcal.mol^{-1}$).

하이브리드 촉매 연소기의 연소특성에 관한 수치적 연구 (Numerical Studies on Combustion Characteristics of a Hybrid Catalytic Combustor)

  • 황철홍;정영식;이창언
    • 대한기계학회논문집B
    • /
    • 제25권4호
    • /
    • pp.583-592
    • /
    • 2001
  • The combustion characteristics of the hybrid catalytic(catalytic+thermal) combustor with a lean methane-air mixture on platinum catalyst were investigated numerically using a 2-D boundary layer model with detailed homogeneous and heterogeneous chemistries. for the more accurate calculations, the actual surface site density of monolith coated with platinum was decided by the comparison with experimental data. It was found that the homogeneous reactions in the monolith had little effect on the change of temperature profile, methane conversion rate and light off location. However, the radicals such as OH and CO were produced rapidly at exit by homogeneous reactions. The effect of operation conditions such as equivalence ratio, temperature, velocity, pressure and diameter of the monolith channel at the entrance were studied. In thermal combustor, the production of N$_2$O was more dominant than that of NO due to the relative importance of the reaction N$_2$+O(+M)→N$_2$O(+M). Finally the productions of CO and NOx by amount of methane addition were studied.

TiOCl2 수용액의 균일침전반응에 의한 나노크기의 브루카이트상 TiO2 분말제조 (Synthesis of Nanosized Brookite-type Titanium Dioxide Powder from aqueous TiOCl2 Solution by homogeneous Precipitation Reaction)

  • 이정훈;양영석
    • 한국재료학회지
    • /
    • 제12권12호
    • /
    • pp.947-954
    • /
    • 2002
  • HCl concentration and reaction time are the decisive factors in determining the structure of precipitates in the process of synthesis of $TiO_2$ particles from aqueous $TiOCl_2$ solution by precipitation and the volumetric proportion of brookite phase in $TiO_2$ particles can be controlled by these two factors. As reaction rate increases with increase of reaction temperature, the reaction time, at which maximum volumetric proportion of brookite phase in $TiO_2$ particles was obtained, was reduced. The brookite was transformed directly to rutile phase with only increase of reaction time. And precipitation was delayed with increase of HCl concentration because the amount of $H_2$O, which is necessary source of oxygen for conversion of $Ti^{+4}$ to $TiO_2$, was relatively reduced with increase of that. Brookite in the mixture phase powder was finally transformed to rutile phase via anatase through heat-treatment.

MOVPE 단결정층 성장법 IV. MOVPE 및 ALE 반응경로 (Metal-Organic Vapor Phase Epitaxy IV. MOVPE and ALE Reaction Mechanisms)

  • 정원국
    • 한국표면공학회지
    • /
    • 제24권1호
    • /
    • pp.1-17
    • /
    • 1991
  • Understanding of the detailed reaction mechanisms during MOVPE and ALE is essential to further improve the properties of the grown crystals and the controllability of the growth parameters. The unified models for the detailed reaction paths are not available at this stage. The study, however, has been advanced to the extent that consensus on some of the reaction paths can be drawn from the scattered data. Metalakyls such as TMGa and TMIn seem to nearly fully decompose in the gas phase through homogeneous reaction at the typical MOVPE growth temperature. Hydrides such as AsH3 and PH3, on the contrary. seem to decompose heterogeneously onthe substrate surfaces as well as homogeneously in the gas phase. However, at lower temperatures, where ALE crystals are typically grown, the growth process is strongly dependent on the surface reactions. It seems that steric hindrance effects which the radicals reaching the substrate exhibit on the surface the growth rate a function of the metalalkyle supply durations. In addition, dydrogens released from hydrides seem to play an essential role in removing carbons leberated from the metalalkyls. High growth temperatures also seem to be effective in desorbing carbons from surface. The understanding of the reaction mechanisms was possible though diverse appraaches utilizing many ex-situ and in-situ diagnostic techniques and genuine experimental designs. It is the purpose of this paper to review and discuss many of these efforts and to draw some possible conclusions from them.

  • PDF

MOVPE 단결정층 성장법 IV. MOVPE 및 ALE 반응경로 (Metal-Organic Vapor Phase Epitaxy IV. MOVPE and ALE Reaction Mechanisms)

  • 정원국
    • 한국표면공학회지
    • /
    • 제24권1호
    • /
    • pp.1.1-1.1
    • /
    • 1991
  • Understanding of the detailed reaction mechanisms during MOVPE and ALE is essential to further improve the properties of the grown crystals and the controllability of the growth parameters. The unified models for the detailed reaction paths are not available at this stage. The study, however, has been advanced to the extent that consensus on some of the reaction paths can be drawn from the scattered data. Metalakyls such as TMGa and TMIn seem to nearly fully decompose in the gas phase through homogeneous reaction at the typical MOVPE growth temperature. Hydrides such as AsH3 and PH3, on the contrary. seem to decompose heterogeneously onthe substrate surfaces as well as homogeneously in the gas phase. However, at lower temperatures, where ALE crystals are typically grown, the growth process is strongly dependent on the surface reactions. It seems that steric hindrance effects which the radicals reaching the substrate exhibit on the surface the growth rate a function of the metalalkyle supply durations. In addition, dydrogens released from hydrides seem to play an essential role in removing carbons leberated from the metalalkyls. High growth temperatures also seem to be effective in desorbing carbons from surface. The understanding of the reaction mechanisms was possible though diverse appraaches utilizing many ex-situ and in-situ diagnostic techniques and genuine experimental designs. It is the purpose of this paper to review and discuss many of these efforts and to draw some possible conclusions from them.