• Title/Summary/Keyword: holomorphic foliations

Search Result 2, Processing Time 0.015 seconds

CR-PRODUCT OF A HOLOMORPHIC STATISTICAL MANIFOLD

  • Vandana Gupta;Jasleen Kaur
    • Honam Mathematical Journal
    • /
    • v.46 no.2
    • /
    • pp.224-236
    • /
    • 2024
  • This study inspects the structure of CR-product of a holomorphic statistical manifold. Findings concerning geodesic submanifolds and totally geodesic foliations in the context of dual connections have been demonstrated. The integrability of distributions in CR-statistical submanifolds has been characterized. The statistical version of CR-product in the holomorphic statistical manifold has been researched. Additionally, some assertions for curvature tensor field of the holomorphic statistical manifold have been substantiated.

REMARKS ON A THEOREM OF CUPIT-FOUTOU AND ZAFFRAN

  • Kim, Jin Hong
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.591-602
    • /
    • 2020
  • There is a well-known class of compact, complex, non-Kählerian manifolds constructed by Bosio, called the LVMB manifolds, which properly includes the Hopf manifold, the Calabi-Eckmann manifold, and the LVM manifolds. As in the case of LVM manifolds, these LVMB manifolds can admit a regular holomorphic foliation 𝓕. Moreover, later Meersseman showed that if an LVMB manifold is actually an LVM manifold, then the regular holomorphic foliation 𝓕 is actually transverse Kähler. The aim of this paper is to deal with a converse question and to give a simple and new proof of a well-known result of Cupit-Foutou and Zaffran. That is, we show that, when the holomorphic foliation 𝓕 on an LVMB manifold N is transverse Kähler with respect to a basic and transverse Kähler form and the leaf space N/𝓕 is an orbifold, N/𝓕 is projective, and thus N is actually an LVM manifold.