• Title/Summary/Keyword: hollow-core

Search Result 168, Processing Time 0.029 seconds

Nano-Structure Control of SiC Hollow Fiber Prepared from Polycarbosilane (폴리카보실란으로부터 제조된 탄화규소 중공사의 미세구조제어)

  • Shin, Dong-Geun;Kong, Eun-Bae;Cho, Kwang-Youn;Kwon, Woo-Tek;Kim, Younghee;Kim, Soo-Ryong;Hong, Jun-Sung;Riu, Doh-Hyung
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.4
    • /
    • pp.301-307
    • /
    • 2013
  • SiC hollow fiber was fabricated by curing, dissolution and sintering of Al-PCS fiber, which was melt spun the polyaluminocarbosilane. Al-PCS fiber was thermally oxidized and dissolved in toluene to remove the unoxidized area, the core of the cured fiber. The wall thickness ($t_{wall}$) of Al-PCS fiber was monotonically increased with an increasing oxidation curing time. The Al-PCS hollow fiber was heat-treated at the temperature between 1200 and $2000^{\circ}C$ to make a SiC hollow fibers having porous structure on the fiber wall. The pore size of the fiber wall was increased with the sintering temperature due to the decomposition of the amorphous $SiC_xO_y$ matrix and the growth of ${\beta}$-SiC in the matrix. At $1400^{\circ}C$, a nano porous wall with a high specific surface area was obtained. However, nano pores grew with the grain growth after the thermal decomposition of the amorphous matrix. This type of SiC hollow fibers are expected to be used as a substrate for a gas separation membrane.

Preparation and Characterization of Multilayer Microcapsules using Biocompatible Polymers (생체적합성 고분자를 사용한 다층 조립 구조 캡슐의 제조와 특성)

  • Jeon, Woohong;Kim, Gwang Yeon;Kim, Gue-Hyun;Ha, Chang-Sik
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.178-184
    • /
    • 2010
  • The aim of this work is the fabrication of polyelectrolyte microcapsules composed of biocompatible polymers such as chitosan, heparin and alginate, to encapsulate the fluorescein isothiocyanate(FITC)-albumin, and to investigate the protein release behavior therefrom. Polyelectrolyte capsules with 4-layer structures could be prepared with biocompatible materials by oppositely charged adsorption using melamin-foramide as a template. Transmission electron microscope(TEM), scanning electron microscope(SEM) and optical microscope confirmed hollow capsule structures. Protein release before and after encapsulation was monitored with a UV-Vis spectrometer. Microcapsules have different behaviors depending on the kind of polyelectrolyte polymers, chitosan-heparin capsules or chitosan-alginate capsules. In conclusion, the polyelectrolyte multilayer shells can be switched between an open and closed state by means of tuning the pH value.

An Analysis of Core Technologies and Acquisition Methodology for Combat Aircraft Powerplants (전투기 추진기관 기술현황 분석 및 핵심기술 획득 방안)

  • 이기영;김해원;강수준
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.92-105
    • /
    • 2000
  • Core technologies of powerplants, which are necessary for the development of Korean type combat aircraft, are analyzed. And then, the acquisition methodologies for the technologies are proposed. With respect to the aircraft engine design and manufacturing technologies, simple basic technologies such as component manufacturing and assembling technology come to close to those of advanced countries, but the core technologies were not acquired or in the understanding level only. Therefore, the research on the component manufacturing technology should be specialized for buildup of international competition first, and the research on core technologies such as high pressure compressor design, blisk, FADEC and hollow fan blade design should be concentrated step by step by taking an active participation in the development project of international cooperative aircraft powerplants.

  • PDF

Determination of Chromium(VI) and Copper(II) in Organic Solvent - Solution by Liquid Core Optical Fiber Spectrophotometry

  • Wang, JuFang;Fen, Minzhao;Wei, Wang;He, Qushe;Wu, Guanyan
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.457-460
    • /
    • 1995
  • A new hollow fiber filled with the lower refractive index liquid as core constructs a liquid core optical fiber(LCOF). The LCOF have been used as colorimetric cell to determine elements Cr and Cu in the presence of 70%- 50% ethanol or 50% dioxane aqueous solution, based on colored complex of Chromium(VI) with Diphenycarbazid(DPC) and copper with Chromaurd S(CAS) respectively. The sensitivity (1/ng/ml) of calibration curve of Cr and Cu are 0.052, 0.017 over the range 0 - 25, 0 - 24(ng/ml) respectively. The Cr in the animal gum and Nation Standard of China are determined with recoveries of 94 - 102%.

  • PDF

Application of Oxide Nanofibers Synthesized by Electrospinning to Chemical Sensors

  • Choi, Sun-Woo;Akash, Katoch;Jung, Sung-Hyun;Kim, Sang-Sub
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.3.2-3.2
    • /
    • 2011
  • Nanofibers, one of various one-dimensional nanomaterials such as nanorods, nanowires and nanotubes have been successfully synthesized by many groups in recent years and their applications to chemical sensors, catalytic filters and biomedicine, etc. are extensively tested. In particular, there is a possibility that chemical sensors based on oxide nanofibers can overcome the shortcomings of chemical sensors based on single nanowires. In order to prepare oxide nanofibers, the electrospinning method is most widely used. In this work, we synthesized various oxide nanofibers including ZnO, SnO2 and CuO by employing an electrospinning method and various shapes of nanofibers including core-shell nanofibers and hollow nanofibers as well. The response properties of the various nanofibers to oxidizing and reducing gaseous species have been investigated systematically. The normal oxide nanofibers showed high sensitivity and quite fast response time to many gaseous species. Furthermore, derivatives of normal nanofibers including hollow nanofibers, core-shell nanofibers and heterostructured nanofibers display much superior sensing properties. These results hold promise for the practical application of oxide nanofibers to chemical sensors. In addition, the sensing mechanisms operated in the nanofibers will be discussed in detail.

  • PDF