• Title/Summary/Keyword: hollow fibers

Search Result 118, Processing Time 0.024 seconds

Development of Commercial-scaled Pervaporation Hollow Fiber Membrane System for High Pressure and High Temperature Applications (고온 고압용 상업적 규모의 중공사 투과증발 막시스템 개발)

  • Yeom, Choong Kyun;Kang, Kyeong Log;Kim, Joo Yeol;Ahn, Hyo Sung;Kwon, Konho
    • Membrane Journal
    • /
    • v.23 no.4
    • /
    • pp.257-266
    • /
    • 2013
  • The main purpose of this study is to develop a commercial scale of pervaporative process equipped with hollow fiber membrane modules, being able to effectually purify organic solvent at high temperature well over its boiling point under high vapor pressure. Three constituent technologies have been developed; 1) to fabricate braid-reinforced hollow fiber membrane stable in high pressure and high temperature application, 2) to design and fabricate a commercial scale of hollow fiber membrane module, and 3) to design and fabricate a pilot scale of pervaporation equipment system. The developed hollow fiber membrane possesses a membrane performance superior to the membrane of Sulzer (Germany) which is the most-well known for pervaporation process, and the membrane module equips hollow fiber membranes of $4.6m^2$ and the pervaporation system can treat organic liquid at 200 L/h, which is based on the dehydration of 95 wt% isopropyl alcohol (IPA). Since the membrane module is designed to flow in and pass through the inside of individual hollow fiber membrane, not to involve both the formation of feed's dead volume observed in flat-sheet membrane module and the channeling of feed occurring inside hollow fiber bundle which lower membrane performance seriously, it showed excellent separation efficiency. In particular, the module is inexpensive and has less heat loss into its surrounding, in compared with flat-sheet membrane module. In addition, permeant can be removed effectively from the outer surface of hollow fiber membrane because the applied vacuum is conveyed uniformly through space between fibers into respective fiber, even into one in the middle of the hollow fiber bundle in which the space between fibers is uniform in distance. Since the hollow fiber membrane pervaporation system is the first one ever developed in the world, our own unique proprietary technology can be secured, preoccupying technical superiority in export competitive challenges.

Effect of High-Temperature Spinning and PVP Additive on the Properties of PVDF Hollow Fiber Membranes for Microfiltration

  • Cha, Bong-Jun;Yang, Jung-Mok
    • Macromolecular Research
    • /
    • v.14 no.6
    • /
    • pp.596-602
    • /
    • 2006
  • The effect of high-temperature spinning and poly(vinyl pyrrolidone) (PVP) additive on poly(vinylidene fluoride) (PVDF) hollow fiber membranes was investigated using differential scanning calorimetry, X-ray diffraction measurement, and scanning electron microscopy, together with the corresponding microfiltration performances such as water flux, rejection rate, and elongational strength. Using high-temperature spinning, porous hollow fiber membranes with particulate morphology were prepared through PVDF crystallization. The particulate structure of the membranes was further modified by the addition of miscible PVP with PVDF. Due to these effects, the rejection rate and strength of the fibers were increased at the expense of reduced water flux and mean pore size, which indicates that high-temperature spinning and PVP addition are vary effective to control the morphology of PVDF hollow fiber membranes for microfiltration.

Analysis of Hollow Optical Fiber with Graded-Index Profile (언덕형 Hollow Optical Fiber의 전계 해석)

  • Pee, Joong-Ho;Jeong, Woo-Jin;Kim, Chang-Min
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.6
    • /
    • pp.493-499
    • /
    • 2006
  • Arbitrary graded-index HOF(Hollow Optical Fibers) are analyzed using the modified Airy function, and the corresponding eigenvalue equation that renders precise results is derived. For graded index HOF, the gradient of an evanescent field in hollow region could be adjusted more sharply than the conventional step-index HOF and the feasibility of more effective atom-guiding is confirmed.

Characterization of Luster Properties of Nylon 6 Hollow Filament Yarn Woven Fabric - Three-dimensional Simulation of Hollow Filament -

  • Kim, Jong-Jun;Jeon, Dong-Won;Jeon, Jee-Hae
    • Journal of Fashion Business
    • /
    • v.8 no.6
    • /
    • pp.68-77
    • /
    • 2004
  • Hollow filament yarns provide better warmth to the touch, lighter in weight, increased opacity, and subtle luster compared to the regular synthetic filament yarns. However, luster properties of textile fibers or fabrics are often difficult to characterize, partly due to the fineness of the surface texture, the anisotropic nature of the weave structure, the complexity of the fiber array comprising a yarn, and the fiber structure itself. In this study, the fabric surface luster image was analyzed using image analysis methods after image acquisition. The hollow filament fiber was modeled using a three-dimensional modeling software. It was then ray-traced for comparing the virtual luster images of the hollow fiber and the regular fiber models based on shading models including photon mapping. The luster object size of the actual hollow filament fabric was smaller than that of the regular filament fabric. The shape of the luster object of the hollow filament fabric was dual peak type while that of the regular filament was single.

Preparation of $\gamma-LiAlO_2$ Short Fibers by the Sol-Gel Method (졸-겔법에 의한 $\gamma-LiAlO_2$ 단섬유의 제조)

  • 현상훈;이재현;홍성안
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.10
    • /
    • pp.1079-1088
    • /
    • 1996
  • Discontinuous ${\gamma}$-LiAlO2 fibers for fiber-reinforcing MCFC matrixes have been produced by the sol-gel process using the centrifugal spinning apparatus of the Rotary type. Gel fibers could be obtained through spinning of stable LiAlO2 complex polymetric sols under the optimum spinning conditions (hollow-disc rotating velocity 9000 rpm sol feeding rate of 4ml/min flowing N2 temperature of 4$0^{\circ}C$ and flowing N2 pressure of 4 bar). It was found that defect free and densified ${\gamma}$-LiAlO2 fibers with the relative density of 98% and the mean diameter of 4.7${\mu}{\textrm}{m}$ were prepared when the spinned fibers were heat-treated to 100$0^{\circ}C$ on the specified heating schedule. in particular the mean diameter and length of fibers could be controlled by the pressure of flowing N2 and the chopping-sieving method respectively.

  • PDF

Blood Compatibility of Hollow Fiber Membranes Treated with Plasma Polymerization (플라즈마 중합 처리된 중공사 막의 혈액 적합성)

  • Kwon O. S.;Lee S. C.
    • Korean Journal of Materials Research
    • /
    • v.15 no.8
    • /
    • pp.521-527
    • /
    • 2005
  • Surface modification of polypropylene hollow fiber membranes was peformed in order to develop blood-compatible biomaterials for use in the blood contacting and oxygenation membranes of a lung-assist device(LAD). Blood compatibility was determined by using anticoagulation blood and evaluating formation of blood clots on their surfaces as well as activation of plasma coagulation cascade, platelet adhesion, and aggregation. It was verified that the number of platelets on the silicone coated fibers was significantly lower than those on polypropylene. It was also found that the polypropylene hollow fiber membranes using plasma treatment exhibited suppression of complement activation in blood compatibility test.

High Density Cell Cultivation of Escherichia coli in a Dual Hollow Fiber Bioreactor (이중실관 반응기에서 E. coli의 고농도 배양)

  • Chung, Bong-Hyun;Chang, Ho-Nam;Kim, In-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.13 no.3
    • /
    • pp.209-212
    • /
    • 1985
  • The cell density and packing characteristics of Escherichia coli immobilized in a dual hollow fiber bioreactor consisting of outer silicone membrane for oxygen transport and three inner isotropic polypropylene hollow fibers for substrate transport were investigated. The cells have grown forming the layer like animal tissue in a nearly 100% packing density. The dry biomass density was 550g/liter of void volume for cell growth, which was the highest among the biomass densities ever reported.

  • PDF

Characteristics of Kapok Fibers According to Various Pretreatment Conditions (전처리 처리 조건에 따른 케이폭 섬유의 특성)

  • Hong, Seok Il;Lee, Hee Dong;Shim, Jae Yun;Seo, Won Jin;Lee, Beom Soo
    • Textile Coloration and Finishing
    • /
    • v.26 no.3
    • /
    • pp.230-236
    • /
    • 2014
  • The kapok fibers which are the functional fiber materials having natural hollows are environment friendly materials the demand and interest of which are increasing. The kapok fibers are environment friendly and natural hollow fibers which are 5-8 times lighter than cottons and have excellent performances in thermo keeping property, air permeability, bulkiness and resilience. In this study, the pretreatment according to the dyeing behaviors of kapok fibers were studied. Pretreatment(scouring, bleaching) were a variety of conditions. Scouring and bleaching, images of changed surfaces and cross-sections and dyeing behaviors of the dye-o-meter according to the concentration measured in meters and compared. Although the final exhaustion ratio of the kapok fibers scoured with a high concentration recipe was almost as same as that of the kapok fibers bleached with a high concentration recipe, the initial absorption speed of the kapok fibers scoured with the high concentration recipe was faster than that of the kapok fibers bleached with the high concentration recipe.

Polycrystalline Ceramic Fibers by Extrusion

  • Sagesser, Peter;Wegmann, Markus;Gut, Beat;Berroth, Karl;,
    • The Korean Journal of Ceramics
    • /
    • v.4 no.4
    • /
    • pp.382-386
    • /
    • 1998
  • titanate and a silicon carbide/zirconium diboride particulate composite have each been blended with thermoplastic of aqueous binders and extruded. The green extrudates have diameters ranging between 50 and 150 ㎛ and polyethylene-base 150 ${\mu}m$ diameter fibers can be drawn down at elevated temperature to approximately 40 ${\mu}m$ diameter. Hollow fibers with 150${\mu}m$ outer and 90 ${\mu}m$ inner diameter can also be fabricated. Green fibers have been processed into chopped fiber felts for use as gas distributors/current collectors in an experimental solid oxide fuel cell (SOFC) and the first attempts at producing simple textile structures have been successful. The fibers, tubes and felts have been successfully debound and sintered and characterization of the sintered PSZ fibers, for example, has revealed a density in excess of 99% and tensile failure stresses up to 1.0 GPa for 78 ${\mu}m$ diameter fibers.

  • PDF