• 제목/요약/키워드: hole transport polymer

검색결과 50건 처리시간 0.035초

Charge Carrier Photogeneration and Hole Transport Properties of Blends of a $\pi$-Conjugated Polymer and an Organic-Inorganic Hybrid Material

  • Han, Jung-Wook;An, Jong-Deok;Jana, R.N.;Jung, Kyung-Na;Do, Jung-Hwan;Pyo, Seung-Moon;Im, Chan
    • Macromolecular Research
    • /
    • 제17권11호
    • /
    • pp.894-900
    • /
    • 2009
  • This study examined the charge carrier photogeneration and hole transport properties of blends of poly (9-vinylcarbazole) (PVK), $\pi$-conjugated polymer, with different weight proportions (0~29.4 wt%) of (PEA)$VOPO_4{\cdot}H_2O$ (PEA: phenethylammonium cation), a novel organic-inorganic hybrid material, using IR, UV-Vis, and energy dispersive spectroscopy (EDS), thermogravimetric analysis (TGA), steady state photocurrent (SSPC) measurement, and atomic force microscopy (AFM). The SSPC measurements showed that the photocurrent of PVK was reduced by approximately three orders of magnitude by the incorporation of a small amount (~12.5 wt%) of (PEA) $VOPO_4{\cdot}H_2O$, suggesting that hole transport occurred through the PVK carbazole groups, whereas a reverse trend was observed at high proportions (>12.5 wt%) of (PEA)$VOPO_4{\cdot}H_2O$, suggesting that transport occurred via (PEA)$VOPO_4{\cdot}H_2O$ molecules. The transition to a trap-controlled hopping mechanism was explained by the difference in ionization potential and electron affinity of the two compounds as well as the formation of charge percolation threshold pathways.

Preparation of 3,4-Ethylenedioxythiophene (EDOT) and N-4-butylphenyl-N,N-diphenylamine (BTPA) Copolymer Having Hole Transport Ability

  • Sim, Jae-Ho;Sato, Hisaya
    • Macromolecular Research
    • /
    • 제17권9호
    • /
    • pp.714-717
    • /
    • 2009
  • Hole transport copolymers consisting of 3,4-ethylenedioxythiophene (EDOT) and N-4-butylphenyl-N,N-diphenylamine (BTPA) were synthesized by oxidative coupling reaction using $FeCl_3$ as an oxidant. These copolymers showed good solubility and their thin films showed sufficient morphological stability. The copolymers showed an absorption maximum around 320 nm. Copolymers had an oxidation peak at approximately $1.03{\sim}1.14V$ versus the Ag/AgCl electrode. The hole mobility increased with increasing portion of the EDOT unit. The hole mobility of the copolymer containing 57% of the EDOT unit showed the highest mobility of $3{\times}10^{-5}cm^2/V{\cdot}s$.

The effect of fullerene on the device performance of organic light-emitting

  • Lee, Jun-Yeob
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.1805-1808
    • /
    • 2006
  • In this paper, we describe a versatile use of fullerene(C60) as a charge transporting material for organic light-emitting diodes. The use of fullerene as a buffer layer for an anode, a doping material for hole transport layer, and an electron transport layer was investigated. Fullerene improved the hole injection from an anode to a hole transport layer by lowering the interfacial energy barrier and enhanced the lifetime of the device as a doping material for a hole transport layer. In addition, it was also effective as an electron transporting material to get low driving voltage in the device.

  • PDF

High performance of inverted polymer solar cells

  • Lee, Hsin-Ying;Lee, Ching-Ting;Huang, Hung-Lin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.61.2-61.2
    • /
    • 2015
  • In the past decades, green energy, such as solar energy, wind power, hydropower, biomass energy, geothermal energy, and so on, has been widely investigated and developed to solve energy shortage. Recently, organic solar cells have attracted much attention, because they have many advantages, including low-cost, flexibility, light weight, and easy fabrication [1-3]. Organic solar cells are as a potential candidate of the next generation solar cells. In this abstract, to improve the power conversion efficiency and the stability, the inverted polymer solar cells with various structures were developed [4-6]. The novel cell structures included the P3HT:PCBM inverted polymer solar cells with AZO nanorods array, with pentacene-doped active layer, and with extra P3HT interfacial layer and PCBM interfacial layer. These three difference structures could respectively improve the performance of the P3HT:PCBM inverted polymer solar cells. For the inverted polymer solar cells with AZO nanorods array as the electronic transportation layer, by using the nanorod structure, the improvement of carrier collection and carrier extraction capabilities could be expected due to an increase in contact area between the nanorod array and the active layer. For the inverted polymer solar cells with pentacene-doped active layer, the hole-electron mobility in the active layer could be balanced by doping pentacene contents. The active layer with the balanced hole-electron mobility could reduce the carrier recombination in the active layers to enhance the photocurrent of the resulting inverted polymer solar cells. For the inverted polymer solar cells with extra P3HT and PCBM interfacial layers, the extra PCBM and P3HT interfacial layers could respectively improve the electron transport and hole transport. The extra PCBM interfacial layer served another function was that led more P3HT moving to the top side of the absorption layer, which reduced the non-continuous pathways of P3HT. It indicated that the recombination centers could be further reduced in the absorption layer. The extra P3HT interfacial layer could let the hole be more easily transported to the MoO3 hole transport layer. The high performance of the novel P3HT:PCBM inverted polymer solar cells with various structures were obtained.

  • PDF

Synthesis of Conjugated Polymers with Fluorene and Biphenylamine and Application to PLED Devices

  • Park, Eun-Jung;Kwon, Hyeok-Yong;Park, Lee-Soon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.458-460
    • /
    • 2008
  • Four kinds of copolymers with fluorene and biphenylamine units were synthesized by palladium-catalyzed polycondensation reaction. These polymers were characterized in terms of their UV/Visible and photoluminescence (PL) properties in solution and film state. These polymers were also studied as a hole transporting material in the polymer light emitting diode (PLED) devices.

  • PDF

Solution-processed electrophosphorescent devices with a thin fluoropolymer at the hole transport interfacial layer

  • Park, Jae-Kyun;Hwang, Gyoung-Seok;Lee, Tae-Woo;Chin, Byung-Doo
    • Journal of Information Display
    • /
    • 제12권4호
    • /
    • pp.223-227
    • /
    • 2011
  • Electrophosphorescent devices with ionomer-type hole transport layers were investigated. On top of the 3,4-ethylenedioxy thiophene:poly(4-styrene sulfonate) [PEDOT:PSS] structures, fluoropolymer interfacial layers (FPIs) with different side chain lengths were introduced. Both for the PEDOT:PSS/FPI (layered) and PEDOT:PSS (mixed) structures with soluble phosphorescent emitters, the short-side-chain FPIs showed higher efficiency. The difference in the electrical properties of the two FPIs for bipolar (light-emitting) devices was not clear, but the hole-only device clearly showed the favored hole injection at the PEDOT:PSS/FPI structure with a shorter side chain, a copolymer of tetrafluoroethylene and sulfonyl fluoride vinyl ether.

QLEDs 효율 및 안정성 향상을 위한 전하 수송 소재 개발 동향 (Research trend in the development of charge transport materials to improve the efficiency and stability of QLEDs)

  • 김예진;박수진;이동구;이원호
    • 접착 및 계면
    • /
    • 제23권2호
    • /
    • pp.17-24
    • /
    • 2022
  • 양자점은 수 나노미터 크기의 반도체 나노입자로 우수한 발광 특성 및 색순도, 간단한 밴드갭 조절의 장점 때문에 이를 발광원으로 사용한 양자점 디스플레이가 차세대 디스플레이로 주목받고 있다. 하지만 전하 주입 불균형 문제로 인해서 소자의 효율 및 안정성에 큰 문제가 발생하고 이를 해결하기 위한 많은 연구가 진행되었다. 본 논문에서는 전자 및 정공 수송층에 중간층을 삽입하여 양자점 디스플레이의 발광과 수명 특성을 향상시킨 연구와 정공 수송층의 구조 변화를 통해서 정공 수송 능력을 향상시킨 연구들에 대해서 소개하고자 한다.

Hole trapping in carbon nanotube-polymer composite organic light emitting diodes

  • Woo, H.S.;Czerw, R.;Carroll, D.L.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.1047-1052
    • /
    • 2003
  • Controlling carrier transport in light emitting polymers is extremely important for their efficient use in organic opto-electronic devices [1]. Here we show that the interactions between single wall carbon nanotubes (SWNTs) and conjugated polymers can be used to modify the overall mobility of charge carriers within nanotube-polymer nanocomposites. By using a unique, double emitting-organic light emitting diodes (DE-OLEDs) structure. we have characterized the hole transport within electroluminescent nanocomposites (nanotubes in poly (m-phenylene vinylene-co-2,5-dioctoxy-p-phenylene) or PmPV). We have shown using this idea that single devices with color tunability can be fabricated. It is seen that SWNTs in PmPV are responsible for hole trapping, leading to shifts in the emission wavelengths. Our results could lead to improved organic optical amplifiers, semiconducting devices, and displays.

  • PDF

Synthesis and Characterization of Crosslinkable Hole-Injection Transport Material for Polymer Light Emitting Diodes

  • Thi, Mai Nguyen;Kim, Jin-Woo;Vu, Quang Hung;Park, Lee-Soon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.810-813
    • /
    • 2009
  • Fluorene derivatives are well-known in the polymer OLEDs due to their good charge carrying property. In this work, we synthesized a series of conjugated copolymers based fluorene derivative and phenylamine units by using Buchwald-Hartwig reaction in order to investigate their photoreactivities and use as the HIL/HTL layers of OLEDs using solution processes.

  • PDF

촉진수송 및 태양전지용 분리막 (Polymer Electrolytes and their Application to Solar Cells and Separation Membranes)

  • 강용수
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 2004년도 첨단 분리막 연구동향
    • /
    • pp.13-35
    • /
    • 2004
  • Metal Complexes in Macromolecules Applications of Polymer Electrolyte Membranes Facilitated Transport in Solid State Roles of Electrolytes in Solar Cells - Electrolytes :ㆍI- and $I_3$-conductor ㆍelectron barrier or hole conductor ㆍelectrochemical redox reaction media ㆍinterfacial contactor for dye, $TiO_2$ and electrode ㆍmechanical separator (omitted)

  • PDF