Preparation of 3,4-Ethylenedioxythiophene (EDOT) and N-4-butylphenyl-N,N-diphenylamine (BTPA) Copolymer Having Hole Transport Ability

  • Sim, Jae-Ho (NPI Co. Ltd., R&D Center) ;
  • Sato, Hisaya (Faculty of Engineering, Tokyo University of Agriculture and Technology)
  • Published : 2009.09.25

Abstract

Hole transport copolymers consisting of 3,4-ethylenedioxythiophene (EDOT) and N-4-butylphenyl-N,N-diphenylamine (BTPA) were synthesized by oxidative coupling reaction using $FeCl_3$ as an oxidant. These copolymers showed good solubility and their thin films showed sufficient morphological stability. The copolymers showed an absorption maximum around 320 nm. Copolymers had an oxidation peak at approximately $1.03{\sim}1.14V$ versus the Ag/AgCl electrode. The hole mobility increased with increasing portion of the EDOT unit. The hole mobility of the copolymer containing 57% of the EDOT unit showed the highest mobility of $3{\times}10^{-5}cm^2/V{\cdot}s$.

Keywords

References

  1. L. Bert Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J. R. Reynolds, Adv. Mater., 7, 12 (2000)
  2. S. Ashizawa, R. Horikawa, and H. Okuzaki, Synthetic Met., 153, 5 (2005) https://doi.org/10.1016/j.synthmet.2005.07.214
  3. J. Y. Kim, J. H. Jung, D. E. Lee, and J. Joo, Synthetic Met., 126, 311 (2002) https://doi.org/10.1016/S0379-6779(01)00576-8
  4. S. Miyata and H. S. Nalwa, Organic Electroluminescence Materials and Device, Gordon and Breach, Amsterdam, 1999
  5. J. M. Son, M. Nakao, K. Ogino, and H. Sato, Macromol. Chem. Phys., 200, 65 (1999) https://doi.org/10.1002/(SICI)1521-3935(19990101)200:1<65::AID-MACP65>3.0.CO;2-S
  6. J. K. Ha, M. Vacha, P. Khanchaitit, D. Ath-Ong, S. H. Lee, K. Ogino, and H. Sato, Synthetic Met., 144, 151 (2004) https://doi.org/10.1016/j.synthmet.2004.02.016
  7. Y. Yang, Q. Pei, and A. J. Heeger, J. Appl. Phys., 79, 934 (1996) https://doi.org/10.1063/1.360875
  8. J. Louie, J. F. Hartwig, and A. J. Fry, J. Am. Chem. Soc., 119, 11695 (1997)
  9. C. P. Lin, T. Tsutsui, and S. Saito, New Polym. Mater., 4277 (1995)
  10. D. U. Kim, E. Aminaka, T. Tsutsui, and S. Saito, Jpn. Appl. Phys., 34, 6255 (1995) https://doi.org/10.1143/JJAP.34.6255
  11. E. S. Kolb, R. A. Gaudiana, and P. G. Mehta, Macromolecules, 29, 2359 (1996) https://doi.org/10.1021/ma951021u
  12. E. S. Kolb, R. A. Gaudiana, and P. G. Mehta, Macromolecules, 29, 2359 (1996). (12) A. Kraft, P. L. Burn, A. B. Holmes, D. D. C. Bradley, R. H. Friend, and J. H. F Martens, Synthetic Met., 55, 4163 (1993)
  13. K. Ogino, A. Kanegae, R. Yamaguchi, H. Sato, and J. Kujata, Macromol. Rapid Commun., 20, 103 (1999) https://doi.org/10.1002/(SICI)1521-3927(19990301)20:3<103::AID-MARC103>3.0.CO;2-Q
  14. K. Strzelec, N. Fugino, J. Ha, K. Ogino, and H. Sato, Macromol. Chem. Phys., 203, 2488 (2002) https://doi.org/10.1002/macp.200290031
  15. J. H. Sim, K. Yamada, S. H. Lee, S. Yokokura, and H. Sato, Synthetic Met., 157, 940 (2007) https://doi.org/10.1016/j.synthmet.2007.09.009
  16. J. H. Sim, U. Ueno, I. Natori, J. K. Ha, and H. Sato, Synthetic Met., 158, 345 (2008) https://doi.org/10.1016/j.synthmet.2008.02.005
  17. O. Stephan, F. Tran-Van, and C. Chevrot, Synthetic Met., 131, 31 (2002) https://doi.org/10.1016/S0379-6779(02)00123-6