• Title/Summary/Keyword: hole injection

Search Result 577, Processing Time 0.031 seconds

Efficient Green Phosphorescent OLEDs with Hexaazatrinaphthylene Derivatives as a Hole Injection Layer (Hexaazatrinaphthylene 유도체를 정공 주입층으로 사용한 고효율 녹색 인광 OLEDs)

  • Lee, Jae-Hyun;Lee, Jonghee
    • Applied Chemistry for Engineering
    • /
    • v.26 no.6
    • /
    • pp.725-729
    • /
    • 2015
  • Organic light emitting diodes (OLEDs) are regarded as the next generation display and solid-state lighting due to their superb achievements from extensive research efforts on improving the efficiency and stability of OLEDs in addition to developing new materials. Herein, efficient green phosphorescent OLEDs were obtained by using hexaazatrinaphthylene (HAT) derivatives as a hole injection layer. External quantum and current efficiencies of OLEDs were enhanced from 8.8% and 30.8 cd/A to 13.6% and 47.7 cd/A, respectively by inserting a thin layer of HAT derivatives between the ITO and hole transporting layer. The enhancement of OLEDs was found to be originated from the inserted HAT derivatives, which resulted in the optimized hole-electron balance inside the emission layer.

Study on recombination zone of blue phosphorescent OLED (청색인광 OLED의 재결합 영역에 관한 연구)

  • Kim, Tae-Yong;Moon, Dae-Gyu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.305-306
    • /
    • 2009
  • In this study, we have invastigated the recombination zone in the blue phosphorescent organic light-emitting devices with various partially doped structures. The basic device structure of the blue PHOLED was anode / hole injection layer (HIL) / hole transport layer (HTL) / emittingvastigated the recombination zone in the blue layer (EML) / hole blocking layer (HBL) / electron transport layer (ETL) / electron injection layer (EIL) / cathode. After the preparation of the blue PHOLED, the current density (J) - voltage (V) - luminance (L) and current efficiency characteristics were measured.

  • PDF

Fabrication of Red, Green, and Blue Organic Light-emitting Diodes using m-MTDATA as a Common Hole-injection Layer

  • Seol, Ji-Youn;Yeo, Seok-Ki;Song, Min-Chul;Park, Chin-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1408-1409
    • /
    • 2005
  • Organic light-emitting diodes (OLEDs) of metalsemiconductor-metal (MSM) structure have been fabricated by using m-MTDATA [4,4',4"-tris (3-methylphenylphenylamino) triphenylamine] as a hole-injection layer (HIL). The m-MTDATA is shown to be an effective hole-injecting material for the OLED, in that the insertion of m-MTDATA greatly reduces the roughness of anode surface and improves the device performance.

  • PDF

Organic Light-Emitting Diodes based on m-MTDATA as Hole Injection Layer

  • Kim, Jeong-Moon;Hwang, Hyun-Min;Park, Chin-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.901-902
    • /
    • 2003
  • Three-color organic light-emitting diodes (OLEDs) of metal-semiconductor-metal (MSM) structure have been favricated by using m-MTDATA [4,4',4"-tris (3-methylphenylphenylamino) triphenylamine] as hole injection layer(HIL). The mMTDATA is shown to be an effective hole injecting material, in that the insertion of mMTDATA greatly reduces the roughness of anode surface and improves the device performance. Red, green and blue OLEDs were fabricated, and their color coordinates in CIE chromaticity were found to be (0.600, 0.389), (0.240, 0.525), and (0.171, 0.171), respectively. The luminous efficiencies of the fabricated OLEDs were 1.4 lm/W at 106 $cd/m^{2}$ for red, 1.4 lm/W at 100 $cd/m^{2}$ for green, and 2.0 lm/W at 104 $cd/m^{2}$ for blue.

  • PDF

The Weldability of Aluminum Ball in Electrolyte Injection Hole by Nd:YAG Laser (리튬이온전지의 전해액 주입구 볼에 대한 Nd:YAG 레이저 용접성)

  • Kim, Jong-Do;Yoo, Seung-Jo;Kim, Jang-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.740-745
    • /
    • 2006
  • This study suggested the occurrence source of weld-defects and its solution methods in a welding of Electrolyte injection hole by pulsed Nd:YAG laser. In experiment, the ramp down was used in order that solidification crack was removed. Furthermore. shrinkage stress and heat input were reduced by changing of weld trajectory and defocused distance. As a results of a experiment, a sound weld bead shape and crack-free weld bead can be obtained. In conclusion this show that the welding stability is greatly affected by modulation of laser pulse shape for the same laser energy and welding parameters.

Emission Properties of OLED Devices with Various Hole Injection Materials (정공주입층에 따른 OLED 소자의 발광 특성)

  • Lee, Bong-Sub;Gao, Xin-Wei;Park, Jong-Yek;Baek, Yong-Gu;Yang, Jae-Woong;Paek, Kyeong-Kap;Ju, Sung-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.6
    • /
    • pp.562-568
    • /
    • 2008
  • In this paper, the hole injection layer(HIL) materials have been synthesized and analyzed. Their HOMO levels are $4.93{\sim}5.22\;eV$, and their energy band gaps are $2.74{\sim}3.19\;eV$. Their glass transition temperatures($T_g$) are all above $114^{\circ}C$, which implies that they are highly thermal-stable. The green OLED devices with a structure of ITO(150 nm)/NEW_HIL(50 nm)/NPB(30 nm)/$Alq_3$(50 nm)/Al:Li(100 nm) were fabricated and tested, incorporating these newly synthesized HIL materials. According to the test results of OLED devices, the I-V-L performances of these devices increase in the following sequence: ELM307 > ELM200 > ELM321 > ELM327 > ELM325. In addition, the OLED device with ELM307 as a HIL has the highest brightness and efficiency at the same driving voltage. These experimental results have shown that ELM307 can be used as one of the most promising candidates for HIL materials.

Effect of Secondary Flow Injection on Flow Charncteristics in 3-Dimensional Supersonic Nozzle (초음속 노즐 내 2차 분사 slot 개수에 따른 유동 특성 변화)

  • Song, J.W.;Yi, J.J.;Cho, H.H.
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3529-3533
    • /
    • 2007
  • The advantages of the SITVC(secondary injection thrust vector control) technique over mechanical thrust vector systems include a reduction in both the nozzle weight and complexity due to the elimination of the mechanical actuators that are used in conventional vectoring. Computational study is performed to understand the fluidic thrust vectoring control of an axisymmetric nozzle, in which secondary gas injection is made in the divergent section of the nozzle. The nozzle has a design mach number 3. The effect of injection hole number and shape of secondary jet on the mach number distribution of SITVC were investigated. The standard ${\kappa}$ - ${\epsilon}$ turbulence model solved the complex three-dimensional nozzle flows perturbed by the secondary gas jet. The numerical code was validated by experiment. The results showed that the mach number distribution of circular and square nozzle are similar each other. As number of second injection hole increasing, a effect of deflection was decreased.

  • PDF

CFD Analysis on Gas Injection System of Solid SCR for NOx Reduction of Exhaust Emissions in Diesel Engine (디젤엔진 배출가스의 질소산화물 저감을 위한 Solid SCR용 가스분사 시스템의 전산유체해석 연구)

  • Lee, Hoyeol;Yoon, Cheon Seog;Kim, Hongsuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.5
    • /
    • pp.73-83
    • /
    • 2014
  • CFD(computational fluid dynamics) model is developed to simulate direct injection of ammonia gas phase from ammonia transporting materials into the SCR catalyst in the exhaust pipe of the engine with solid SCR. Configurations of one-hole and four-hole nozzle, circumferential type, porous tube type, and the effect of mixer configurations which commonly used in liquid injection of AdBlue are considered for complex geometries. Mal-distribution index related to concentration of ammonia gas, flow uniformity index related to velocity distribution, and pressure drop related to flow resistance are compared for different configurations of complex geometries at the front section of SCR catalyst. These results are used to design the injection system of ammonia gas phase for solid SCR of target vehicle.

An Experimental Study on Spray Characteristics of Multi-Hole GDI Injector (다공형 GDI 인젝터의 분무특성에 대한 실험적 연구)

  • Lee, Sung-Won;Park, Sung-Young
    • Journal of ILASS-Korea
    • /
    • v.16 no.4
    • /
    • pp.201-209
    • /
    • 2011
  • Optimum engine performance is obtained when the spray characteristics is well matched to the geometry of a combustion chamber. Among many parameters governing the combustion performance in internal combustion engine, fuel supply characteristics and atomization are important performance factors. Therefore, spray characteristics of high pressure multi-hole injector has been studied experimentally. An experimental test system has been made to operate high pressure injection system and to visualize spray behavior. Spray visualization has been performed to analyze spray formation, spray cone angle, bent angle and penetration length. Spray interaction with piston has been analyzed with various injector installation angle, injection pressure and ambient pressure. Test results show that penetration length is greatly influenced by the injection pressure. Penetration length is decreased as ambient pressure increased. Spray cone angle is increased as injection pressure and ambient pressure increased. However, bent angle is not influenced by the change of injection pressure and ambient pressure. Spray cone angle distribution map is plotted using the experimental data. Fuel movement around the spark-plug has been enforced as increasing injector installation angle.

A study on distribution of drop size and injection rate of air-shroud injector sprays under steady and transient injection condition (정상.과도 분사 조건에서의 에어슈라우드 인젝터 분무의 입경.분사량 분포에 관한 연구)

  • Lee, C.H.
    • Journal of ILASS-Korea
    • /
    • v.9 no.4
    • /
    • pp.17-23
    • /
    • 2004
  • Spray characteristics of a twin-hole air shrouded nonle designed for gasoline injectors was investigated by using laser diffraction particle analyzer (LDPA) and tomography reconstruction- A confined spray chamber which is optically accessible through a pair of glass windows was made to simulate the fuel injection condition in intake manifold of gasoline engine. The measurement was applied to the twin hole injector with and without an air shroud. It demonstrates that for the case with an air shroud, fine atomization is achieved and there exists a large number of fine droplets between the region of the main spray streams, which conforms with the spray visualization. The drop size distribution was investigated as a function of elapse time after fuel injection. The distribution was greatly affected by the measurement position from the injector exit. Also, the spatially resolved spray volume fraction and Sauter Mean Diameter (SMD) from line-of-sight data of the LDPA are tomographically reconstructed by Convolution Fourier transformation under the steady injection condition.

  • PDF