• 제목/요약/키워드: hole injection

검색결과 574건 처리시간 0.029초

분사홀 형상과 분사각 변화가 터빈블레이드 선단 막냉각 특성에 미치는 영향 (Effects of Various Injection Hole Shapes and Injection Angles on the Characteristics of Turbine Blade Leading Edge Film Cooling)

  • 김윤제;권동구
    • 대한기계학회논문집B
    • /
    • 제25권7호
    • /
    • pp.933-943
    • /
    • 2001
  • Using a semi-circled blunt body model, the geometrical effects of injection hole on the turbine blade leading edge film cooling are investigated. The film cooling characteristics of two shaped holes (laterally- and streamwise-diffused holes) and three cylindrical holes with different lateral injection angles, 30°, 45°, 60°, respectively, are compared with those of cylindrical hole with no lateral injection angle experimentally and numerically. Kidney vortices, which decrease the adiabatic film cooling effectiveness, appear on downstream of the cylindrical hole with no lateral injection angle. At downstream of the two shaped holes have better film cooling characteristics than the cylindrical one. Instead of kidney vortices, single vortex appears on downstream of injection holes with lateral injection angle. The adiabatic film cooling effectiveness is symmetrically distributed along the lateral direction downstream of the cylindrical hole with no lateral injection angle. But, at downstream of the cylindrical holes with lateral injection angle, the distribution of adiabatic film cooling effectiveness in the lateral direction shows asymmetric nature and high adiabatic film cooling effectiveness regions are more widely distributed than those of the cylindrical hole with no lateral injection angle. As the blowing ratio increases, also, the effects of hole shapes and injection angles increase.

새로운 정공주입층을 이용한 OLEDs의 특성에 관한 연구 (A Study on the Characteristics of OLEDS Using a New Hole Injection Layer)

  • 심혜연;정지훈;김준호;김영관
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.2
    • /
    • pp.1046-1049
    • /
    • 2004
  • The improvement in OLEDS performance is correlated with the surface chemical composition, hole injection and electron injection. In this study, a new hole injection material, HIL202(NPB derivatives), was synthesized and the devices with the structure of ITO/HIL202/NPB/$Alq_3$/Liq/Al were fabricated. The devices with a new hole injection material showed the improved current density, luminance and life time then the NPB or conventional hole injection material based OLEDs, due to the improved adhesion morphology between ITO surface and hole injection material.

  • PDF

다공 디젤노즐의 홀수 변화에 따른 우량계수 평가에 관한 연구 (A Study on Estimate of Flow Coefficient with Variation of Hole Number in Multi-hole Diesel Nozzle)

  • 이지근;조원일;노병준
    • 한국자동차공학회논문집
    • /
    • 제9권2호
    • /
    • pp.59-66
    • /
    • 2001
  • This experimental study is to investigate the flow characteristics of the multi-hole nozzle used in the fuel injection system of a heavy-duty diesel engine. A multi-hole diesel nozzle with a 2-spring nozzle holder was used in this study and without changing the total orifice exit area, its hole number varied from 3($d_n$=0.42mm) to 8($d_n$=0.25mm). The injection pressure and needle lift were measured and Bosch type injection rates measurement system was used. The discharge flowrates of each orifice in the multi-hole nozzle changed by the flow conditions inside the nozzle sac hole. In case that pump speed and injection quantity were low, the orifice located in the vertex of nozzle tip had a great deal of injection quantity compared with that of others. As the increment of multi-hole number, the injection duration and the mean injection pressure decrease. The mean and peak injection rates, however, increase. Actually, the mean flow coefficient(${C_d}_{(mean)}$) increases, too. The flow coefficient of the multi 8 hole was evaluated as Cd(mean)=0.74 and that is the maximum value among the examined conditions.

  • PDF

노즐 홀 직경에 따른 단공 GDI 인젝터의 분무 특성 연구 - (1) 분사 및 거시적 분무특성 비교 (Study on Spray Characteristics of Single-Hole GDI Injector according to Nozzle Hole Diameter - (1) Comparison of Injection and Macroscopic Spray Characteristics)

  • 박정현;노승천;상몽소;박수한
    • 한국분무공학회지
    • /
    • 제25권4호
    • /
    • pp.145-153
    • /
    • 2020
  • The purpose of this study is to compare the injection and spray characteristics of single-hole GDI injectors using injection rate and mie-scattering spray images. Five types of single-hole injectors with different nozzle hole diameters were used, and the spray rate, spray tip penetration, spray area, and spray width were analyzed. As a result, the diameter of the nozzle hole had a direct effect on the injection and spray characteristics. It was confirmed that the larger the diameter of the nozzle hole, the higher the injection quantity, the spray tip penetration, the spray area, and the spray width. In addition, it was confirmed that the near-field spray, which has little influence of ambient air, has a great correlation with the injection rate.

Hole drilling angle이 가솔린 직접 분사식 인젝터의 내부 유동에 미치는 영향 (Effects of Hole Drilling Angle on Internal Flow of Gasoline Direct Injection Injector)

  • 김휘준;박성욱
    • 한국분무공학회지
    • /
    • 제26권4호
    • /
    • pp.197-203
    • /
    • 2021
  • In gasoline direct injection injectors, cavitation can be generated inside the hole because of their high injection pressure. In this paper, the effects of cavitation development in injector were investigated depending on the various hole drilling angles were investigated by a numerical method. In order to verify the internal flow model, injection rate and injection quantity of individual holes were measured. The BOSCH long tube method was used to measure the injection rate. As a result, even if the hole diameters were the same, the discharge coefficient differed by up to 10% depending on the hole angle. Moreover, if the hole drilling angle became greater than 30°, the area coefficient and the discharge coefficient decreased as the nozzle outlet was blocked due to cavitation.

노즐 형상 변경이 소형 CRDI 엔진의 성능에 미치는 영향에 대한 수치 해석적 연구 (Numerical Study on the Effect of Nozzle Geometry on the Small CRDI Engine Performance)

  • 민세훈;서현규
    • 한국분무공학회지
    • /
    • 제20권4호
    • /
    • pp.254-260
    • /
    • 2015
  • The objective of this study is to investigate the effect of multi-hole nozzle on the performance of small CRDI engine. Combustion and exhaust emission characteristics of engine were studied by using CFD simulation with ECFM-3Z combustion model. The conditions of simulation were varied with nozzle geometry, injection timing and injection quantity. In addition, the results were compared in terms of combustion pressure, rate of heat release, $NO_x$ and soot emissions. It was found that combustion pressure was increased when injection timing was advanced. The rate of heat release of 6 hole nozzle was higher than that of 12 hole nozzle since the quantity of fuel impinged at the bottom of piston rim was different under different injection timing conditions. In the case of $NO_x$ emission, 6 hole nozzle generated more $NO_x$ emission than 12 hole nozzle. On the other hand, in the case of soot emission, 12 hole nozzle showed higher value than 6 hole nozzle because injected fuel droplets from multi-hole nozzle were coalesced.

분사구 인접영역에서의 막냉각에 관한 3차원 해석 (3-Dimensional Analysis for Film Cooling adjacent Injection Hole)

  • 이용덕;이재헌
    • 대한기계학회논문집
    • /
    • 제17권10호
    • /
    • pp.2590-2600
    • /
    • 1993
  • The present paper describes numerical predictions for the film cooling effectiveness from a row of hole at various injection ratios and injection alngles.Numerical calculations were performed to investigate film cooling effectiveness and the characteristics of flow and temperature distributions in the region near the downstream of injection hole including the region of adverse pressure gradient. The elliptic 3-dimensional governing equations with variable thermal properties were solved by SIMPLE algorithm. The results showed that the presence of adverse pressure gradient in the region near the downstream of injection hole induces large temperature gradient. At injection angle of $35^{\circ}$ the average film cooling effectiveness was increased as increased of injection ratio up to 1.0. At injection angle of $90^{\circ}$ however, the average film cooling effectiveness was decreased from injection ratio larger than 0.4.

다공 노즐에서 분사조건이 디젤 연료의 미립화 특성에 미치는 영향 (Effect of Injection Condition on the Diesel. Fuel Atomization in a Multi-Hole Nozzle)

  • 서현규;김지원;이창식
    • 한국분무공학회지
    • /
    • 제14권1호
    • /
    • pp.8-14
    • /
    • 2009
  • This paper present the diesel fuel spray evolution and atomization performance in a multi-hole nozzle in terms of injection rate, spray evolutions, and mean diameter and velocity of droplets in a compression ignition engine. In order to study the effect of split injection on the diesel fuel spray and atomization characteristic in a multi-hole nozzle, the test nozzle that has two-row small orifice with 0.2 mm interval was used. The time based fuel injection rate characteristics was analyzed from the pressure variation generated in a measuring tube. The spray characteristics of a multi-hole nozzle were visualized and measured by spray visualization system and phase Doppler particle analyzer (PDPA) system. It was revealed that the total injected fuel quantities of split injection are smaller than those of single injection condition. In case of injection rate characteristics, the split injection is a little lower than single injection and the peak value of second injection rate is lower than single injection. The spray velocity of split injection is also lower because of short energizing duration and small injection mass. It can not observe the improvement of droplet atomization due to the split injection, however, it enhances the droplet distributions at the early stage of fuel injection.

  • PDF

저압 분사시 캐비테이션에 의한 단공 노즐의 미립화 향상 (The Enhacned Atomization of Single Hole Nozzle by Cavitation at The Low Pressure Injection)

  • 손종원;차건종;김덕줄
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.952-957
    • /
    • 2001
  • The objectives of this investigation were to obtain an excellent spray by cavitation under the low injection pressure. When cavitation occurs in the nozzle hole, the atomization of the liquid jet enhanced considerably. In this experiments, a acrylic nozzle made the gap and installed the bypass in the nozzle hole was used to enhance the atomization of the liquid jet at the low injection pressure. The liquid flow in the nozzle hole was photographed by a transmitted light using a micro flash. The spray angle was measured macroscope images of PMAS and the Sauter mean diameter was measured PDA system. To measure the pressure of the nozzle hole, pressure transducer was used. The results of this study indicated that enhanced atomization of the liquid jet at the low injection pressure was obtained by making the gap and installing the bypass at the single hole nozzle.

  • PDF

변형된 단일 막냉각홀 주위에서의 열/물질전달 및 막냉각효율 특성 (Characteristics of Heat/Mass Transfer and Film Cooling Effectiveness Around a Shaped Film Cooling Hole)

  • 이동호;김병기;조형희
    • 대한기계학회논문집B
    • /
    • 제23권5호
    • /
    • pp.577-586
    • /
    • 1999
  • Two problems with jet injection through the cylindrical film cooling hole are 1) penetration of jet into mainstream rather than covering the surface at high blowing rates and 2) nonuniformity of the film cooling effectiveness in the lateral direction. Compound angle injection is employed to reduce those two problems. Compound angle injection increases the film cooling effectiveness and spreads more widely. However, there is still lift off at high blowing rates. Shaped film cooling hole is a possible means to reduce those two problems. Film cooling with the shaped hole is investigated in this study experimentally. Film cooling hole used in present study is a shaped hole with conically enlarged exit and Inlet-to-exit area ratio is 2.55. Naphthalene sublimation method has been employed to study the local heat/mass transfer coefficient and film cooling effectiveness for compound injection angles and various blowing rates around the shaped film cooling hole. Enlarged hole exit area reduces the momentum of the jet at the hole exit and prevents the penetration of injected jet into the mainstream effectively. Hence, higher and more uniform film cooling effectiveness values are obtained even at relatively high blowing rates and the film cooling jet spreads more widely with the shaped film cooling hole. And the injected jet protects the surface effectively at low blowing rates and spreads more widely with the compound angle injections than the axial injection.