• Title/Summary/Keyword: hold mode

Search Result 77, Processing Time 0.023 seconds

다목적실용위성 1호 Maneuver Mode에서의 지상관제 DATA 분석

  • Suk, Byong-Suk
    • Aerospace Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.65-71
    • /
    • 2002
  • KOMPSAT-1 AOCS mode divided into three major mode like Sun, Maneuver, Science Mode. The Maneuver mode consist of attitude hold and Δ-V Burn submode. This paper focus on the analysis of AOCS Maneuver Mode characteristics based on on-orbit playback data. The nadir pointing performance of attitude hold submode and the process for Δ-V Burn firing with plus/ minus 90 degree pitch/ roll maneuvering was verified. And also verified that the on-orbit performance meets the AOCS subsystem specification as designed.

  • PDF

Study on the influence of hold-down spring on the vibration characteristics of core barrel

  • Tiancai Tan;Lei Sun;Litao Liu;Jie Yang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3252-3259
    • /
    • 2023
  • The influence of hold-down spring (HDS) on the vibration characteristics of core barrel is studied in this paper. First, the vibration characteristics experiment of core barrel was carried out with four type of different hold-down spring. These hold-down springs represent the same hold-down force under different spring stiffness and different hold-down force under the same spring stiffness. And then a new finite element method for researching the influence of hold-down spring on the vibration characteristics of core barrel was presented. This new method could consider the influence of the hold-down force and the spring stiffness at the same time. The results suggest that, the hold-down force and friction have greater influence on the vibration characteristics of core barrel than the spring stiffness, and the influence is nonlinear. The influence of the boundary condition on beam mode is greater than that on shell mode for core barrel.

Application of Perturbation Estimation using Fractional-Order Hold Technique to Sliding Mode Control (Fractional-Order Hold기법을 이용한 섭동 추정기의 슬라이딩 모드 제어에 적용)

  • Nam Yun Joo;Lee Yuk-Hyung;Park Myeong-Kwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.121-128
    • /
    • 2006
  • This paper deals with the application of enhanced perturbation estimation (SMCEPE) to sliding mode control of a dynamic system in the presence of perturbations including external disturbances, unpredictable parameter variations, and unstructured dynamics. Compared to conventional sliding mode control (SMC) and sliding mode control with perturbation estimation (SMCPE), the proposed one can offer robust control performances under serious control conditions, such as fast dynamic perturbations and slow loop-closure speeds, without a priori knowledge on upper bounds of perturbations. The perturbation estimator in SHCEPE also has more adaptability owing to the fractional-order hold technique. The effectiveness and superiority of the proposed control strategy are demonstrated by a series of simulations on the position tracking control of a two-link robot manipulator.

Control Law Design for a Tilt-rotor Unmanned Aerial Vehicle with a Nacelle Mounted WE (Wing Extension) (체공성능 향상을 위한 확장날개 틸트로터 무인기의 제어법칙설계)

  • Kang, Young-Shin;Park, Bum-Jin;Cho, Am;Yoo, Chang-Sun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.11
    • /
    • pp.1103-1111
    • /
    • 2014
  • The results of control law design for a tilt-rotor unmanned aerial vehicle that has a nacelle mounted wing extension (WE) are presented in this paper. It consists of a control surface mixer, stability and control augmentation system (SCAS), hold mode for altitude / speed / heading, and a guidance mode for preprogram and point navigation which includes automatic take-off and landing. The conversion corridor and the control moments derivatives between the original tilt-rotor and its variant of the nacelle mounted WE were compared to show the effectiveness of the WE. The nacelle conversion of the original tilt-rotor starts when the airspeed is greater than 30 km/h but its WE variant starts at 0 km/h in order to reduce the drag caused by the high incidence angle of the WE. The stability margins of the inner loop are presented with the optimization approach. The outer loops for the hold mode are designed with trial and error methods with linear and nonlinear simulation. The main control parameter for altitude control of the helicopter mode is thrust command and it is transferred to the pitch attitude command in airplane mode. Otherwise, the control parameter for the speed of the helicopter mode is the pitch attitude command and it is transferred to the thrust command in airplane mode. Therefore the speed and altitude hold mode are coupled to each other and are engaged at the same time when an internal pilot engages any of the altitude or speed hold modes. The nonlinear simulation results of the guidance control for the preprogrammed mode and point navigation are also presented including automatic take-off and landing in order to prove the full control law.

Thruster Loop Controller design of Sun Mode and Maneuver Mode for KOMPSAT-2 (ICCAS 2004)

  • Choi, Hong-Taek;Oh, Shi-Hwan;Rhee, Seung-Wu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1392-1395
    • /
    • 2004
  • In order to successfully develop attitude and orbit control subsystem(AOCS), AOCS engineer performs hardware selection, controller design and analysis, control logic and interface verification on electrical test bed, integrated system test, polarity test, and finally verification on orbit after launching. Attitude and orbit control subsystem for KOMPSAT-2 consists of standby mode, sun mode, maneuver mode, science mode, and power safe mode to stabilize and to control the spacecraft for performing the mission. The sun mode is usually divided into sun point submode, earth search submode and safe hold submode. The maneuver mode is divided into attitude hold submode and ${\triangle}$ V submode, while the science mode divided into science coarse submode and science fine submode. Moreover, it is added to back-up mode which uses wheels as an actuator for sun mode and maneuver mode. In this paper, we describe the controller design process and the performance of the design results with respect to the sun mode and the maneuver mode based on thrusters as an actuator using on flexible model.

  • PDF

Development of Flight Control System and Troubleshooting on Flight Test of a Tilt-Rotor Unmanned Aerial Vehicle

  • Kang, Youngshin;Park, Bum-Jin;Cho, Am;Yoo, Chang-Sun;Koo, Sam-Ok;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.120-131
    • /
    • 2016
  • The full results of troubleshooting process related to the flight control system of a tilt-rotor type UAV in the flight tests are described. Flight tests were conducted in helicopter, conversion, and airplane modes. The vehicle was flown using automatic functions, which include speed-hold, altitude-hold, heading-hold, guidance modes, as well as automatic take-off and landing. Many unexpected problems occurred during the envelope expansion tests which were mostly under those automatic functions. The anomalies in helicopter mode include vortex ring state (VRS), long delay in the automatic take-off, and the initial overshoot in the automatic landing. In contrast, the anomalies in conversion mode are untrimmed AOS oscillation and the calibration errors of the air data sensors. The problems of low damping in rotor speed and roll rate responses are found in airplane mode. Once all of the known problems had been solved, the vehicle in airplane mode gradually reached the maximum design speed of 440km/h at the operation altitude of 3km. This paper also presents a comprehensive detailing of the control systems of the tilt-rotor unmanned air vehicle (UAV).

The Effect of Tensile Hold time on the Fatigue Crack Propagation Property and Grain Size on the Creep Behavior in STS 316L. (STS316L의 고온피로균열에 미치는 인장유지시간의 효과 및 결정립크기에 따른 크리프 거동에 관한 연구)

  • 김수영
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.373-378
    • /
    • 2000
  • The heat resistant material, in service, may experience static loading, cyclic loading, or a combination of two. An experimental study of crack growth behavior of STS 316L austenitic stainless steel under fatigue, and creep-fatigue loading conditions were carried out on compact tension specimens at various tensile hold times. In the crack growth experiments under hold times. In the crack growth experiments under hold time loading conditions, tensile hold times were ranged from 5 seconds to 100 seconds and its behavior was characterized using the $\Delta$K parameter. The crack growth rates generally increase with increasing hold times. However in this material, the trend of crack growth rates decreases with increasing hold times for short hold time range relatively. It is attributed to a decline in the cyclic crack growth rate as a result of blunting at the crack tip by creep deformation. The effect of grain size on the creep behavior of STS 316L was investigated. Specimens with grain size of 30, 65 and 125${\mu}{\textrm}{m}$ were prepared through various heat treatments and they were tested under various test conditions. The fracture mode of 316L changed from transgranular to intergranular with increasing grain size.

  • PDF

A Design of 12-bit 100 MS/s Sample and Hold Amplifier (12비트 100 MS/s로 동작하는 S/H(샘플 앤 홀드)증폭기 설계)

  • 허예선;임신일
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.133-136
    • /
    • 2002
  • This paper discusses the design of a sample-and -hold amplifier(SHA) that has a 12-bit resolution with a 100 MS/s speed. The sample-and-hold amplifier uses the open-loop architecture with hold-mode feedthrough cancellation for high accuracy and high sampling speed. The designed SHA is composed of input buffer, sampling switch, and output buffer with additional amplifier for offset cancellation Hard Ware. The input buffer is implemented with folded-cascode type operational transconductance Amplifier(OTA), and sampling switch is implemented with switched source follower(SSF). A spurious free dynamic range (SFDR) of this circuit is 72.6 dB al 100 MS/s. Input signal dynamic range is 1 Vpp differential. Power consumption is 65 ㎽.

  • PDF

Aircraft Waypoint Navigation Control with Neural Network-Based Altitude-Hold Control

  • Lee, Hyunjae;Bang, Hyochoong;Lee, Eunhee;Hong, Chang-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.1
    • /
    • pp.93-102
    • /
    • 2001
  • Flight control design for the autonomous waypoint navigation of aircraft is presented in this study. The waypoints are defined in terms of desired longitude and latitude. The control design is conducted in longitudinal and lateral directions, respectively. The lateral control is based upon coordinated turn strategy for which no sideslip is allowed under the turning maneuver. The longitudinal control is mainly focused on altitude hold during navigation. Neural network control approach is applied to the altitude-hold mode control. Simulation of the proposed control strategy has been performed under various conditions. A graphical simulation tool was developed to visually demonstrate the control technique developed in this study. A method to simulate the gas turbine transient behavior is developed. The basic principles of the method.

  • PDF

Effect of creep-fatigue interaction on high temperature low cycle fatigue strength and fracture behavior of STS 316 stainless steels (STS 316鋼 의 高溫低사이클 疲勞强度 와 破壞擧動 에 미치는 크리이프 - 疲勞 相互作용 의 影響)

  • 오세욱;이규용;김중완;문무경
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.2
    • /
    • pp.140-149
    • /
    • 1985
  • Fully reversed push-pull low cycle fatigue tests under strain control of trapezoid cyclic mode have been conducted in air at temperature of 550.deg. C and with frequency of 0.5 cpm on the domestic stainless steel STS 316 after solution treatment for 1 hour at 1100.deg. C. As an experimental equipment for high temperature fatigue tests, an electric servo-hydraulic fatigue machine(Instron model 1350) was used. This paper presents the effects of creep hold time and plastic strain range on push-pull high temperature low cycle fatigue life and fracture behavior. The fracture surfaces were observed by means of the scanning electron microscope. The results are as follows. (1) The fatigue life decreases with increase of the plastic strain range equal hold time and also decreases as the hold time is getting longer. (2) The frequency modified damage function can predict fatigue life by incorporating a variation of Coffin's frequency modified approach into damage function. (3) The ratios of creep damage and fatigue damage can be calculated by using he linear accumulation damage concept and the ratio of creep damage increases as the hold time is getting longer. (4) At the creep hold time of 5 minutes and the strain range of 2.0%, the fracture mode was intergranular fracture and striations were hardly observed. In this case, the intergranular cracking was originated in void type('.gamma.' type) cracking.