• Title/Summary/Keyword: hit rate

Search Result 244, Processing Time 0.022 seconds

Design of a Real-time Algorithm Using Block-DCT for the Recognition of Speed Limit Signs (Block-DCT를 이용한 속도 제한 표지판 실시간 인식 알고리듬의 설계)

  • Han, Seung-Wha;Cho, Han-Min;Kim, Kwang-Soo;Hwang, Sun-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12B
    • /
    • pp.1574-1585
    • /
    • 2011
  • This paper proposes a real-time algorithm for speed limit sign recognition for advanced safety vehicle system. The proposed algorithm uses Block-DCT in extracting features from a given ROI(Region Of Interest) instead of using entire pixel values as in previous works. The proposed algorithm chooses parts of the DCT coefficients according to the proposed discriminant factor, uses correlation coefficients and variances among ROIs from training samples to reduce amount of arithmetic operations without performance degradation in classification process. The algorithm recognizes the speed limit signs using the information obtained during training process by calculating LDA and Mahalanobis Distance. To increase the hit rate of recognition, it uses accumulated classification results computed for a sequence of frames. Experimental results show that the hit rate of recognition for sequential frames reaches up to 100 %. When compared with previous works, numbers of multiply and add operations are reduced by 69.3 % and 67.9 %, respectively. Start after striking space key 2 times.

Assessment of predictability of categorical probabilistic long-term forecasts and its quantification for efficient water resources management (효율적인 수자원관리를 위한 범주형 확률장기예보의 예측력 평가 및 정량화)

  • Son, Chanyoung;Jeong, Yerim;Han, Soohee;Cho, Younghyun
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.8
    • /
    • pp.563-577
    • /
    • 2017
  • As the uncertainty of precipitation increases due to climate change, seasonal forecasting and the use of weather forecasts become essential for efficient water resources management. In this study, the categorical probabilistic long-term forecasts implemented by KMA (Korea Meteorological Administration) since June 2014 was evaluated using assessment indicators of Hit Rate, Reliability Diagram, and Relative Operating Curve (ROC) and a technique for obtaining quantitative precipitation estimates based on probabilistic forecasts was proposed. The probabilistic long-term forecasts showed its maximum predictability of 48% and the quantified precipitation estimates were closely matched with actual observations; maximum correlation coefficient (R) in predictability evaluation for 100% accurate and actual weather forecasts were 0.98 and 0.71, respectively. A precipitation quantification approach utilizing probabilistic forecasts proposed in this study is expected to enable water management considering the uncertainty of precipitation. This method is also expected to be a useful tool for supporting decision-making in the long-term planning for water resources management and reservoir operations.

A Neighbor Prefetching Scheme for a Hybrid Storage System (SSD 캐시를 위한 이웃 프리페칭 기법)

  • Baek, Sung Hoon
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.14 no.5
    • /
    • pp.40-52
    • /
    • 2018
  • Solid state drive (SSD) cache technologies that are used as a second-tier cache between the main memory and hard disk drive (HDD) have been widely studied. The SSD cache requires a new prefetching scheme as well as cache replacement algorithms. This paper presents a prefetching scheme for a storage-class cache using SSD. This prefetching scheme is designed for the storage-class cache and based on a long-term scheduling in contrast to the short-term prefetching in the main memory. Traditional prefetching algorithms just consider only read, but the presented prefetching scheme considers both read and write. An experimental evaluation shows 2.3% to 17.8% of hit rate with a 64GB of SSD and the 4GiB of prefetching size using an I/O trace of 14 days. The proposed prefetching scheme showed significant improvement of cache hit rate and can be easily implemented in storage-class cache systems.

The Prediction of Currency Crises through Artificial Neural Network (인공신경망을 이용한 경제 위기 예측)

  • Lee, Hyoung Yong;Park, Jung Min
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.19-43
    • /
    • 2016
  • This study examines the causes of the Asian exchange rate crisis and compares it to the European Monetary System crisis. In 1997, emerging countries in Asia experienced financial crises. Previously in 1992, currencies in the European Monetary System had undergone the same experience. This was followed by Mexico in 1994. The objective of this paper lies in the generation of useful insights from these crises. This research presents a comparison of South Korea, United Kingdom and Mexico, and then compares three different models for prediction. Previous studies of economic crisis focused largely on the manual construction of causal models using linear techniques. However, the weakness of such models stems from the prevalence of nonlinear factors in reality. This paper uses a structural equation model to analyze the causes, followed by a neural network model to circumvent the linear model's weaknesses. The models are examined in the context of predicting exchange rates In this paper, data were quarterly ones, and Consumer Price Index, Gross Domestic Product, Interest Rate, Stock Index, Current Account, Foreign Reserves were independent variables for the prediction. However, time periods of each country's data are different. Lisrel is an emerging method and as such requires a fresh approach to financial crisis prediction model design, along with the flexibility to accommodate unexpected change. This paper indicates the neural network model has the greater prediction performance in Korea, Mexico, and United Kingdom. However, in Korea, the multiple regression shows the better performance. In Mexico, the multiple regression is almost indifferent to the Lisrel. Although Lisrel doesn't show the significant performance, the refined model is expected to show the better result. The structural model in this paper should contain the psychological factor and other invisible areas in the future work. The reason of the low hit ratio is that the alternative model in this paper uses only the financial market data. Thus, we cannot consider the other important part. Korea's hit ratio is lower than that of United Kingdom. So, there must be the other construct that affects the financial market. So does Mexico. However, the United Kingdom's financial market is more influenced and explained by the financial factors than Korea and Mexico.

The Discriminant Analysis of Blood Pressure - Including the Risk Factors - (혈압 판별 분석 -위험요인을 중심으로-)

  • 오현수;서화숙
    • Journal of Korean Academy of Nursing
    • /
    • v.28 no.2
    • /
    • pp.256-269
    • /
    • 1998
  • The purpose of this study was to evaluate the usefulness of variables which were known to be related to blood pressure for discriminating between hypertensive and normotensive groups. Variables were obesity, serum lipids, life style-related variables such as smoking, alcohol, exercise, and stress, and demographic variables such as age, economical status, and education. The data were collected from 400 male clients who visited one university hospital located in Incheon, Republic of Korea, from May 1996 to December 1996 for a regular physical examination. Variables which showed significance for discriminating systolic blood pressure in this study were age, serum lipids, education, HDL, exercise, total cholesterol, body fat percent, alcohol, stress, and smoking(in order of significance). By using the combination of these variables, the possibility of proper prediction for a high-systolic pressure group was 2%, predicting a normal-systolic pressure group was 70.3%, and total Hit Ratio was 70%. Variables which showed significance for discriminating diastolic blood pressure were exercise, triglyceride, alcohol, smoking, economical status, age, and BMI (in order of significance). By using the combination of these variables, the possibility of proper prediction for a high-diastolic pressure group was 71.2%, predicting a normal-diastolic pressure group was 71.3%, and total Hit Ratio was 71.3%. Multiple regression analysis was performed to examine the association of systolic blood pressure with life style-related variables after adjustment for obesity, serum lipids, and demographic variables. First, the effect of demographic variable alone on the systolic blood pressure was statistically significant (p=.000) and adjusted $R^2$was 0.09. Adding the variable obesity on demographic variables resulted in raising adjusted $R^2$to 0.11 (p=.000) : therefore, the contribution rate of obesity on the systolic blood pressure was 2.0%. On the next step, adding the variable serum lipids on the obesity and demographic variables resulted in raising adjusted R2 to 0.12(P=.000) : therefore, the contribution rate of serum lipid on the systolic pressure was 1.0%. Finally, adding life style-related variables on all other variables resulted in raising the adjusted $R^2$to 0.18(p=.000) ; therefore, the contribution rate of life style-related variables on the systolic blood pressure after adjustment for obesity, serum lipids, and demographic variables was 6.0%. Multiple regression analysis was also performed to examine the association of diastolic blood pressure with life style-related variables after adjustment for obesity, serum lipids, and demographic variables. First, the effect of demographic variable alone on the diastolic blood pressure was statistically significant (p=.01) and adjusted $R^2$was 0.03. Adding the variable obesity on demographic variables resulted in raising adjusted $R^2$to 0.06 (p=.000) ; therefore, the contribution rate of obesity on the diastolic blood pressure was 3.0%. On the next step, adding the variable serum lipids on the obesity and demographic variables resulted in raising the adjusted $R^2$ to 0.09(p=.000) ; therefore, the contribution rate of serum lipid on the diastolic pressure was 3.0%. Finally, adding life style-related variables on all other variables resulted in raising the adjusted $R^2$ to 0.12 (p=.000) : therefore, the contribution rate of life style-related variables on the systolic blood pressure after adjustment for obesity, serum lipids, and demographic variables was 3.0%.

  • PDF

A study on the prediction of korean NPL market return (한국 NPL시장 수익률 예측에 관한 연구)

  • Lee, Hyeon Su;Jeong, Seung Hwan;Oh, Kyong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.123-139
    • /
    • 2019
  • The Korean NPL market was formed by the government and foreign capital shortly after the 1997 IMF crisis. However, this market is short-lived, as the bad debt has started to increase after the global financial crisis in 2009 due to the real economic recession. NPL has become a major investment in the market in recent years when the domestic capital market's investment capital began to enter the NPL market in earnest. Although the domestic NPL market has received considerable attention due to the overheating of the NPL market in recent years, research on the NPL market has been abrupt since the history of capital market investment in the domestic NPL market is short. In addition, decision-making through more scientific and systematic analysis is required due to the decline in profitability and the price fluctuation due to the fluctuation of the real estate business. In this study, we propose a prediction model that can determine the achievement of the benchmark yield by using the NPL market related data in accordance with the market demand. In order to build the model, we used Korean NPL data from December 2013 to December 2017 for about 4 years. The total number of things data was 2291. As independent variables, only the variables related to the dependent variable were selected for the 11 variables that indicate the characteristics of the real estate. In order to select the variables, one to one t-test and logistic regression stepwise and decision tree were performed. Seven independent variables (purchase year, SPC (Special Purpose Company), municipality, appraisal value, purchase cost, OPB (Outstanding Principle Balance), HP (Holding Period)). The dependent variable is a bivariate variable that indicates whether the benchmark rate is reached. This is because the accuracy of the model predicting the binomial variables is higher than the model predicting the continuous variables, and the accuracy of these models is directly related to the effectiveness of the model. In addition, in the case of a special purpose company, whether or not to purchase the property is the main concern. Therefore, whether or not to achieve a certain level of return is enough to make a decision. For the dependent variable, we constructed and compared the predictive model by calculating the dependent variable by adjusting the numerical value to ascertain whether 12%, which is the standard rate of return used in the industry, is a meaningful reference value. As a result, it was found that the hit ratio average of the predictive model constructed using the dependent variable calculated by the 12% standard rate of return was the best at 64.60%. In order to propose an optimal prediction model based on the determined dependent variables and 7 independent variables, we construct a prediction model by applying the five methodologies of discriminant analysis, logistic regression analysis, decision tree, artificial neural network, and genetic algorithm linear model we tried to compare them. To do this, 10 sets of training data and testing data were extracted using 10 fold validation method. After building the model using this data, the hit ratio of each set was averaged and the performance was compared. As a result, the hit ratio average of prediction models constructed by using discriminant analysis, logistic regression model, decision tree, artificial neural network, and genetic algorithm linear model were 64.40%, 65.12%, 63.54%, 67.40%, and 60.51%, respectively. It was confirmed that the model using the artificial neural network is the best. Through this study, it is proved that it is effective to utilize 7 independent variables and artificial neural network prediction model in the future NPL market. The proposed model predicts that the 12% return of new things will be achieved beforehand, which will help the special purpose companies make investment decisions. Furthermore, we anticipate that the NPL market will be liquidated as the transaction proceeds at an appropriate price.

A Study on the Wear of Milling Tool and Relativity of Acoustic Emission in Cutting Process (절삭중 밀링공구의 마멸과 음향방출의 관련성에 관한 연구)

  • 윤종학;김동성
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.4 no.2
    • /
    • pp.31-37
    • /
    • 1995
  • This study is focused on the prediction of appropriate tool life by clarifying the correlation between progressive tool wear and AE signal. when rcutting SM45C by End mill in machining center. First of all, end mill have a problem that position of sensor sticking because it is revolution tool, but I think that it can be bained specific character according to sticking Sensor in the Vise. Consequently, the following results have been obtained; 1. Each cutting speed of feed rate over 0.1mm had a tendency to increase linearly according to the RMSAE 2. The level of AE signal at the same cutting area was more sensitive to depth of cut tharn the variation of feed rate 3. In the range of cutting duringqr about 75minqr atqr cutting speed 27m/min flankqr wear turns up aboutqr 0.21mm, aboutqr 0.29mm in the caseqr of about 65minqr at 33/min, qr hereby RMSAE increased rapidly at 0.2mm flank wear, also AE-HIT and CUM-CNTS.

  • PDF

On-line Detection of Cracks in Eggshell (계란 크랙의 온라인 검출)

  • 최완규;조한근;백진하;장영창;연광석;조성찬
    • Journal of Biosystems Engineering
    • /
    • v.24 no.3
    • /
    • pp.253-258
    • /
    • 1999
  • This study was conducted to develop an automatic egg inspection system for detecting creaked eggs based on acoustic impulse response. This system includes a sound generator, a sound sensor with signal conditioner, and a computer. The sound generator that hit the sharp of the dull edges of an egg was constructed with a ceramic ball pendulum attached to a rotary type solenoid. The signal conditioner included a pre-amplifier and a digital signal processing (DSP) board. The parameters for distinguishing cracked and normal eggs were the area, the geometric centroid and the resonance frequency of power spectrum of the acoustic signal generated. An algorithm for on-line detection of the continuous transferring eggs was developed. The performance tests resulted with 91% success rate to separate cracked and normal eggs at the rate of 1 second per an egg.

  • PDF

A study on monitoring of milling tool wear for using the acoustic emission signals (공구마멸 감시에 음향방출 신호를 이용하기 위한 연구)

  • 윤종학
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.3
    • /
    • pp.15-21
    • /
    • 1996
  • This study is focused on the prediction of appropriate tool life by clarifying the correlation between progressive tool wear and AE(Acoustic Emission) signals, while cutting stainless steel by end mill on the machining center. The results of this study were that RMSAE tends to increase linearly along with the increase of the cutting speed, and it was more sensitive to depth of cut than to the variation of feed rate at the same cutting conditions, and RMSAE increases around 0.21mm flank wear hereby AE-HIT also increases. AE signals depend upon tool wear and fracture from the above results. Therefore, the AE signals can be utilized in order to monitor the tool condition.

  • PDF

Improving Hit Ratio and Hybrid Branch Prediction Performance with Victim BTB (Victim BTB를 활용한 히트율 개선과 효율적인 통합 분기 예측)

  • Joo, Young-Sang;Cho, Kyung-San
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.10
    • /
    • pp.2676-2685
    • /
    • 1998
  • In order to improve the branch prediction accuracy and to reduce the BTB miss rate, this paper proposes a two-level BTB structure that adds small-sized victim BTB to the convetional BTB. With small cost, two-level BTB can reduce the BTB miss rate as well as improve the prediction accuracy of the hybrid branch prediction strategy which combines dynamic prediction and static prediction. Through the trace-driven simulation of four bechmark programs, the performance improvement by the proposed two-level BTB structure is analysed and validated. Our proposed BTB structure can improve the BTB miss rate by 26.5% and the misprediction rate by 26.75%

  • PDF