• Title/Summary/Keyword: histogram-based segmentation

Search Result 122, Processing Time 0.03 seconds

Adaptive Image Segmentation Based on Histogram Transition Zone Analysis

  • Acuna, Rafael Guillermo Gonzalez;Mery, Domingo;Klette, Reinhard
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.299-307
    • /
    • 2016
  • While segmenting "complex" images (with multiple objects, many details, etc.) we experienced a need to explore new ways for time-efficient and meaningful image segmentation. In this paper we propose a new technique for image segmentation which has only one variable for controlling the expected number of segments. The algorithm focuses on the treatment of pixels in transition zones between various label distributions. Results of the proposed algorithm (e.g. on the Berkeley image segmentation dataset) are comparable to those of GMM or HMM-EM segmentation, but are achieved with significantly reduced computation time.

Application of An Adaptive Self Organizing Feature Map to X-Ray Image Segmentation

  • Kim, Byung-Man;Cho, Hyung-Suck
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1315-1318
    • /
    • 2003
  • In this paper, a neural network based approach using a self-organizing feature map is proposed for the segmentation of X ray images. A number of algorithms based on such approaches as histogram analysis, region growing, edge detection and pixel classification have been proposed for segmentation of general images. However, few approaches have been applied to X ray image segmentation because of blur of the X ray image and vagueness of its edge, which are inherent properties of X ray images. To this end, we develop a new model based on the neural network to detect objects in a given X ray image. The new model utilizes Mumford-Shah functional incorporating with a modified adaptive SOFM. Although Mumford-Shah model is an active contour model not based on the gradient of the image for finding edges in image, it has some limitation to accurately represent object images. To avoid this criticism, we utilize an adaptive self organizing feature map developed earlier by the authors.[1] It's learning rule is derived from Mumford-Shah energy function and the boundary of blurred and vague X ray image. The evolution of the neural network is shown to well segment and represent. To demonstrate the performance of the proposed method, segmentation of an industrial part is solved and the experimental results are discussed in detail.

  • PDF

A Segmentation Technique of Textured Images Using Conditional 1-D Histograms (조건부 1차원 히스토그램을 이용한 Texture 영상 분할)

  • 양형렬;이정환;김성대
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.4
    • /
    • pp.580-589
    • /
    • 1990
  • This paper describes an efficient method of texture image segmentation based on conditional 1-dimensional histograms. We consider the multi-dimensional histogram, and it is projected into each axis in order to obtain conditional 1-dimensional histograms. And we extract uniform regions by iteratively applying the peak-valley detection method to conditional 1-dimensional histograms. In view of the amount of memory and computation time, the proposed method is superior to the conventional method which uses the multi-dimensional histogram. By applying the proposed method to the artificial and natural texture images some desirable results are obtained.

  • PDF

Improvement of Stereo Depth Image and Object Segmentation for Household Robot Applications (가정용 로봇 응용 시스템을 위한 스테레오 영상 개선과 객체분할)

  • Lee, Byoung-Moo;Han, Dong-Il
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.209-210
    • /
    • 2007
  • Obtained disparity map from the stereo camera by using the several stereo matching algorithms carries lots of noise because of various causes. In our approach, mode filtering and noise elimination technique using the histogram and projection-based region merging methods are adopted for improving the quality of disparity map and image segmentation. The proposed algorithms are implemented in VHDL and the real-time experimentation shows the accurately divided objects.

  • PDF

Cotent-based Image Retrieving Using Color Histogram and Color Texture (컬러 히스토그램과 컬러 텍스처를 이용한 내용기반 영상 검색 기법)

  • Lee, Hyung-Goo;Yun, Il-Dong
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.9
    • /
    • pp.76-90
    • /
    • 1999
  • In this paper, a color image retrieval algorithm is proposed based on color histogram and color texture. The representative color vectors of a color image are made from k-means clustering of its color histogram, and color texture is generated by centering around the color of pixels with its color vector. Thus the color texture means texture properties emphasized by its color histogram, and it is analyzed by Gaussian Markov Random Field (GMRF) model. The proposed algorithm can work efficiently because it does not require any low level image processing such as segmentation or edge detection, so it outperforms the traditional algorithms which use color histogram only or texture properties come from image intensity.

  • PDF

Image Segmentation Using Mathematical Morphology (수리형태학을 이용한 영상 분할)

  • Cho Sun-gil;Kang Hyunchul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.11C
    • /
    • pp.1076-1082
    • /
    • 2005
  • Recently, there have been much efforts in the image segmentation using morphological approach. Among them, the watershed algorithm is one of powerful tools which can take advantages of both of the conventional edge-based segmentation and region-based segmentation. The concept of watershed is based on topographic analogy. But, its high sensitivity to noise yields a very large number of resulting segmented regions which leads to oversegmentation. So we suggest the restricted waterfall algorithm which reduce the oversegmentation by eliminate not only local minima but also local maxima. As a result, the restricted waterfall algorithm has a good segmented image than the other methods, and has a better binary image than the histogram thresholding method.

Exploiting Color Segmentation in Pedestrian Upper-body Detection (보행자 상반신 검출에서의 컬러 세그먼테이션 활용)

  • Park, Lae-Jeong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.181-186
    • /
    • 2014
  • The paper proposes a new method of segmentation-based feature extraction to improve performance in pedestrian upper-body detection. General pedestrian detectors that use local features are often plagued by false positives due to the locality. Color information of multi parts of the upper body is utilized in figure-ground segmentation scheme to extract an salient, "global" shape feature capable of reducing the false positives. The performance of the multi-part color segmentation-based feature is evaluated by changing color spaces and the parameters of color histogram. The experimental result from an upper-body dataset shows that the proposed feature is effective in reducing the false positives of local feature-based detectors.

A Study on the Fire Flame Region Extraction Using Block Homogeneity Segmentation (블록 동질성 분할을 이용한 화재불꽃 영역 추출에 관한 연구)

  • Park, Changmin
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.14 no.4
    • /
    • pp.169-176
    • /
    • 2018
  • In this study, we propose a new Fire Flame Region Extraction using Block Homogeneity Segmentation method of the Fire Image with irregular texture and various colors. It is generally assumed that fire flame extraction plays a very important role. The Color Image with fire flame is divided into blocks and edge strength for each block is computed by using modified color histogram intersection method that has been developed to differentiate object boundaries from irregular texture boundaries effectively. The block homogeneity is designed to have the higher value in the center of region with the homeogenous colors or texture while to have lower value near region boundaries. The image represented by the block homogeneity is gray scale image and watershed transformation technique is used to generate closed boundary for each region. As the watershed transform generally results in over-segmentation, region merging based on common boundary strength is followed. The proposed method can be applied quickly and effectively to the initial response of fire.

Video Segmentation and Video Browsing using the Edge and Color Distribution (윤곽선과 컬러 분포를 이용한 비디오 분할과 비디오 브라우징)

  • Heo, Seoung;Kim, Woo-Saeng
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.9
    • /
    • pp.2197-2207
    • /
    • 1997
  • In this paper, we propose a video data segmentation method using edge and color distribution of video frames and also develop a video browser by using the proposed algorithm. To segment a video, we use a 644-bin HSV color histogram and the edge information which generated with automatic threshold method. We consider scene's characteristics by using positions and colo distributions of object in each frame. We develop a hierarchical and a shot-based browser for video browsing. We also show that our proposed method is less sensitive to light effects and more robust to motion effects than previous ones like a histogram-based method by testing with various video data.

  • PDF

Intensity Correction of 3D Stereoscopic Images Using Binarization-Based Region Segmentation (이진화기반 영역분할을 이용한 3D입체영상의 밝기보정)

  • Kim, Sang-Hyun;Kim, Jeong-Yeop
    • The KIPS Transactions:PartB
    • /
    • v.18B no.5
    • /
    • pp.265-270
    • /
    • 2011
  • In this paper, we propose a method for intensity correction using binarization-based region segmentation in 3D stereoscopic images. In the proposed method, 3D stereoscopic right image is segmented using binarizarion. Small regions in the segmented image are eliminated. For each region in right image, a corresponding region in left image is decided through region matching using correlation coefficient. When region-based matching, in order to prevent overlap between regions, we remove a portion of the area closed to the region boundary using morphological filter. The intensity correction in left and right image can be performed through histogram specification between the corresponding regions. Simulation results show the proposed method has the smallest matching error than the conventional method when we generate the right image from the left image using block based motion compensation.