• Title/Summary/Keyword: histaminergic action

Search Result 5, Processing Time 0.018 seconds

Biologically Active Components of Duchesnea indicae Herba (사매의 생리(生理) 활성(活性)에 관한 연구(硏究))

  • Lee, Ihn-Rhan;Lee, Eun-Bang;Lee, Sun-Hee;Lee, Jee-Young
    • Korean Journal of Pharmacognosy
    • /
    • v.15 no.2
    • /
    • pp.85-90
    • /
    • 1984
  • The whole plant of Duchesnea indica (Andr.) Focke (Rosaceae) which has been used in folklore in treating amenorrhea, inflammation, fever and traumatic injuries, in detoxifying and breaking up clots, was studied. The pharmacological test showed that the water extract had estrogenic and histaminergic actions, but no antiserotonin action. As a result of systematic separation in order to detect the active compounds revealing the estrogenic effect, the active compounds were found in the ether fraction. TLC of the ether fraction revealed 8 spots. Among them three major spots (Rf=0.54, 037, 0.31) were separated by preparative TLC. Some chemical properties of those major spots suggested that they were phenolic compounds, but that they were neither linoleic acid nor ${\beta}-sitosterol$ previously reported.

  • PDF

Influence of Histaminergic Receptor Activation on Catecholamine Secretion in The Perfused Rat Adrenal Gland (흰쥐 관류부신에서 Histamine 수용체 활성화가 Catecholamine 분비작용에 미치는 영향)

  • Lim, Dong-Yoon;Rho, Sang-Hyun
    • The Korean Journal of Pharmacology
    • /
    • v.29 no.1
    • /
    • pp.43-55
    • /
    • 1993
  • The present study was conducted to examine the characteristics of histamine on catecholamine secretion in the isolated perfused rat adrenal gland and to clarify the mechanism of its secretory action. Histamine (37.5 to 150 ug) injected into an adrenal vein evoked a dose-dependent significant secretory response of catecholamines (CA) from the rat adrenal gland. However, upon the repeated injection of histamine (150 ug) at 120 min intervals, CA secretion was rapidly decreased after third injection of histamine. Tachyphylaxis to releasing effects of CA evoked by histamine was observed by the repeated administration. The histamine-induced CA secretion was markedly inhibited by the pretreatment with chlorisondamine, diphenhydramine, ranitidine, $Ca^{++}-free$ Krebs solution, nicardipine and TMB-8 while was not affected by pirenzepine. Moreover, the CA secretion evoked by ACh was considerably reduced by the prior perfusion of histamine $(6.8{\times}10^{-5} M)$ for 30 min. These experimental data suggest that histamine causes secretion of CA in a calcium dependent manner from the perfused rat adrenal gland and that its secretory effect is mediated through activation of both $H_1-$ and $H_2-histaminergic$ receptors located in adrenal medulla, which may be associated with stimulation of cholinergic nicotinic receptors.

  • PDF

Influence of Cytisine on Catecholamine Release in Isolated Perfused Rat Adrenal Glands

  • Lim, Dong-Yoon;Jang, Seok-Jeong;Kim, Kwang-Cheol
    • Archives of Pharmacal Research
    • /
    • v.25 no.6
    • /
    • pp.932-939
    • /
    • 2002
  • The aim of the present study was to determine the characteristics of cytisine on the secretion of catecholamines (CA) in isolated perfused rat adrenal glands, and to clarify its mechanism of action. The release of CA evoked by the continuous infusion of cytisine ($1.5{\times}10^{-5} M$) was time-dependently reduced from 15 min following the initiation of cytisine infusion. Furthermore, upon the repeated injection of cytisine ($5{\times}10^{-5}$), at 30 min intervals into an adrenal vein, the secretion of CA was rapidly decreased following the second injection. Tachyphylaxis to the release of CA was observed by the repeated administration of cytisine. The cytisine-induced secretion of CA was markedly inhibited by pretreatment with chlorisondamine, nicardipine, TMB-8, and the perfusion of $Ca^{2+}$-free Krebs solution, while it was not affected by pirenzepine or diphenhydramine. Moreover, the secretion of CA evoked by ACh was time-dependently inhibited by the prior perfusion of cytisine ($5{\times}10^{-6} M$). Taken together, these experimental data suggest that cytisine causes secretion of catecholamines from the perfused rat adrenal glands in a calcium-dependent fashion through the activation of neuronal nicotinic ACh receptors located in adrenomedullary chromaffin cells. It also seems that the cytisine-evoked release of catecholamine is not relevant to the activation of cholinergic M$_1$-muscarinic or histaminergic receptors.

Pharmacological Studies of Zizyphus Seed Extract on Central Nervous System and Blood Pressure (산조인의 중추신경 및 심혈관계에 대한 약리작용)

  • Ahn, Y.S.;Kim, K.H.;Cho, T.S.;Kim, W.J.;Hong, S.S.
    • The Korean Journal of Pharmacology
    • /
    • v.18 no.1
    • /
    • pp.17-22
    • /
    • 1982
  • Zizyphus seed(Zizyphus vulgaris Lamark var. Spinosus Bunge) has long been used as hypnotics and sedatives in oriental medicine, and it is reported that the Zizyphus seed elicited a variety of pharmacologic actions besides CNS depression. Present study was undertaken to investigate the effects of Zizyphus seed on the central nervous system and on the blood pressure. The effect of Zizyphus seed on the central nervous system was measured by the influence of thiopental sleeping time and by inhibition of chemical convulsion (strychnine and pentylenetetrazol induced). Blood pressure changes by Zizyphus extract and its mode of action were investigated. The ground Zizyphus seed was extracted with hexane and methanol, consecutively and the supernatants were discarded. The precipitate was re-extracted with distilled water and the supernatant was evaporated to a dark-brownish sticky liquid, which was used as Zizyphus seed extract in this study after dissolving in saline prior to experiment. The results are as follows. 1) Zizyphus seed extract caused marked prolongation of the thiopental sleeping time in mice. 2) The chemical convulsion by strychnine and pentylenetetrazol, and the mortality by them in chicks were not affected by pretreatment of Zizyphus seed extract. 3) Zizyphus seed extract produced transient fall of blood pressure in the cat, and this hypotentive effect was blocked partially by atropine but not affected by bilateral vagotomy and/or hexamethonium, nor propranolol and, chlorpheniramine and/or cimetidine. With the above results, it may be suggested that the water extract of Zizyphus seeds contains components producing CNS depression and hypotension. Furthermore it is felt that the cholinergic effect, but not the adrenergic or histaminergic, is partly responsible for the hypotensive effect of Zizyphus seed extract.

  • PDF

Mechanism of Epibatidine-Induced Catecholamine Secretion in the Rat Adrenal Gland

  • Lim, Dong-Yoon;Lim, Geon-Han;Oh, Song-Hoon;Kim, Il-Sik;Kim, Il-Hwan;Woo, Seong-Chang;Lee, Bang-Hun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.3
    • /
    • pp.259-270
    • /
    • 2001
  • The present study was attempted to investigate the characteristics of epibatidine on secretion of catecholamines (CA) from the isolated perfused model of the rat adrenal gland, and to establish the mechanism of action. Epibatidine $(3{\times}10^{-8}\;M)$ injected into an adrenal vein produced a great inhibition in secretory response of CA from the perfused rat adrenal gland. However, upon the repeated injection of epibatidine $(3{\times}10^{-8}\;M)$ at 15 min-intervals, CA secretion was rapidly decreased after second injection of epibatidine. However, there was no statistical difference between CA secretory responses of both 1st and 2nd periods by the successive administration of epibatidine at 120 min-intervals. Tachyphylaxis to releasing effects of CA evoked by epibatidine was observed by the repeated administration. Therefore, in all subsequent experiments, epibatidine was not administered successively more than twice only 120 min-intervals. The epibatidine-induced CA secretion was markedly inhibited by the pretreatment with atropine, chlorisondamine, pirenzepine, nicardipine, TMB-8, and perfusion of $Ca^{2+}-free$ Krebs solution containing EGTA, while was not affected by diphenhydramine. Moreover, the CA secretion evoked by ACh for 1st period $(0{\sim}4\;min)$ was greatly potentiated by the simultaneous perfusion of epibatidine $(1.5{\times}10^{-8}\;M),$ but followed by time-dependently gradual reduction after 2nd period. The CA release evoked by high potassium $(5.6{\times}10^{-8}\;M),$ for 1st period $(0{\sim}4\;min)$ was also enhanced by the simultaneous perfusion of epibatidine, but those after 2nd period were not affected. Taken together, these experimental data suggest that epibatidine causes catecholamine secretion in a calcium dependent fashion from the perfused rat adrenal gland through activation of neuronal cholinergic (nicotinic and muscarinic) receptors located in adrenomedullary chromaffin cells. It also seems that epibatidine-evoked catecholamine release is not relevant to stimulation of histaminergic receptors.

  • PDF