• Title/Summary/Keyword: histamine receptors

Search Result 40, Processing Time 0.028 seconds

Characteristics of $Ca^{2+}$ Stores in Rabbit Cerebral Artery Myocytes

  • Kim, Sung-Joon;Kim, Jin-Kyung;So, In-Suk;Suh, Suk-Hyo;Lee, Sang-Jin;Kim, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.3
    • /
    • pp.313-322
    • /
    • 1998
  • In a myocyte freshly isolated from rabbit cerebral artery, the characteristics of $Ca^{2+}$ release by histamine or caffeine were studied by microspectrofluorimetry using a $Ca^{2+}-binding$ fluorescent dye, fura-2. Histamine (5 ${\mu}M$) or caffeine (10 mM) induced a phasic rise of cytoplasmic free $Ca^{2+}$ concentration $([Ca^{2+}]_C)$ which could occur repetitively with extracellular $Ca^{2+}$ but only once or twice in $Ca^{2+}-free$ bathing solution. Also, the treatment with inhibitor of sarcoplasmic reticulum $Ca^{2+}-ATPase$ suppressed the rise of $[Ca^{2+}]_C$ by histamine or caffeine. In $Ca^{2+}-free$ bathing solution, short application of caffeine in advance markedly attenuated the effect of histamine, and vice versa. In normal $Ca^{2+}-containing$ solution with ryanodine (2 ${\mu}M$), the caffeine-induced rise of $[Ca^{2+}]_C$ occurred only once and in this condition, the response to histamine was also suppressed. On the other hand, in the presence of ryanodine, histamine could induce repetitive rise of $[Ca^{2+}]_C$ while the amplitude of peak rise became stepwisely decreased and eventually disappeared. These results suggest that two different $Ca^{2+}-release$ mechanisms (caffeine-sensitive and histamine-sensitive) are present in rabbit cerebral artery myocyte and the corresponding pools overlap each other functionally. Increase of $[Ca^{2+}]_C$ by histamine seems to partially activate ryanodine receptors present in caffeine-sensitive pool.

  • PDF

Effects of Allergy Related Drugs on Rat Peritioneal Mast Cells in Hyaluronidase Activity and Histamine Release (수종의 알레르기 관련 약물이 흰쥐의 복강내 비만세포에서 Hyaluronidase 및 히스타민 유리에 미치는 영향)

  • Yoo, Shin-Ae;Kim, Ku-Ja;Hah, Jong-Sik
    • The Korean Journal of Physiology
    • /
    • v.22 no.2
    • /
    • pp.259-272
    • /
    • 1988
  • Type I allergic reaction and it's related clinical manifestations are known to occur by the effects of various chemical mediators. These chemical mediators are released from circulating basophils and tissue mast cells, which become 'sensitized' through the binding of antigens and antibodies of the IgE type to their cell surface receptors. Efforts to elucidate the mechanism of the release of these mediators, especially that of histamine, have been persued for years. The mechanism is not yet clarified at the present time. Recent reports of hyaluronidase, an enzyme known to be involved in the tissue inflammatory process, as possible participant in type I allergic reaction, initiated this study. Relationships between the hyaluronidase activity and histamine release from the sensitized rat peritoneal mast cells were investigated. Also anti-allergic agents, tranilast and disodium cromoglycate, along with known histamine releasers, morphine and compound 48/80, were used to observe the inhibitory and stimulatory effects of these substances on the hyaluronidase activity as well as histamine release from the rat mast cells. The results obtained are summarized as follows: 1) Hyaluronidase activity and histamine release from sensitiaed rat peritoneal mast cells started to increase on the 4th day of postsensitization. Hyaluronidase activity reached it's peak value on the 7th day of postsensitization and that of histamine release on the 14th day of postsensitization. 2) Hyaluronidase activity and histamine release from sensitized rat peritoneal mast cells, pre-treated with tranilast revealed significant decrease in comparison with those of non-treated cells. 3) Hyaluronidase activity and histamine release from sensitized rat peritoneal mast cells, pre-treated with tranilast, followed by morphine injection, revealed significant increase in comparison with those of tranilast treated cells. 4) In vitro study of hyaluronidase activity and histamine release from un-sensitized rat peritoneal mast cells, using morphine and compound 48/80 as activators, revealed significant increase compared to those of non-activator used cells. 5) In vitro study of hyaluronidase activity and histamine release from un-sensitized rat peritoneal mast cells, pre-treated with tranilast and disodium cromoglycate, using confound 48/80 and morphine as activators revealed significant decrease in comparison with those of tranilast and disodium cromoglycate treated cells. From above results, participation of enzyme hyaluronidase in the process of histamine release from sensitized rat pertioneal mast cells, could be suggested. It was also quite evident that the clinically used anti-allergic agents, tranilast and disodium cromoglycate, have significant inhibitory function on the hyaluronidase activity and histamine release from sensitized rat peritoneal mast cells, while morphine significantly increased the hyaluronidase activity and histamine release from sensitized rat peritoneal mast cells.

  • PDF

Antipsychotics for patients with pain

  • Shin, Sang Wook;Lee, Jin Seong;Abdi, Salahadin;Lee, Su Jung;Kim, Kyung Hoon
    • The Korean Journal of Pain
    • /
    • v.32 no.1
    • /
    • pp.3-11
    • /
    • 2019
  • Going back to basics prior to mentioning the use of antipsychotics in patients with pain, the International Association for the Study of Pain (IASP) definition of pain can be summarized as an unpleasant experience, composed of sensory experience caused by actual tissue damage and/or emotional experience caused by potential tissue damage. Less used than antidepressants, antipsychotics have also been used for treating this unpleasant experience as adjuvant analgesics without sufficient evidence from research. Because recently developed atypical antipsychotics reduce the adverse reactions of extrapyramidal symptoms, such as acute dystonia, pseudo-parkinsonism, akathisia, and tardive dyskinesia caused by typical antipsychotics, they are expected to be used more frequently in various painful conditions, while increasing the risk of metabolic syndromes (weight gain, diabetes, and dyslipidemia). Various antipsychotics have different neurotransmitter receptor affinities for dopamine (D), 5-hydroxytryptamine (5-HT), adrenergic (${\alpha}$), histamine (H), and muscarinic (M) receptors. Atypical antipsychotics antagonize transient, weak $D_2$ receptor bindings with strong binding to the $5-HT_{2A}$ receptor, while typical antipsychotics block long-lasting, tight $D_2$ receptor binding. On the contrary, antidepressants in the field of pain management also block the reuptake of similar receptors, mainly on the 5-HT and, next, on the norepinephrine, but rarely on the D receptors. Antipsychotics have been used for treating positive symptoms, such as delusion, hallucination, disorganized thought and behavior, perception disturbance, and inappropriate emotion, rather than the negative, cognitive, and affective symptoms of psychosis. Therefore, an antipsychotic may be prescribed in pain patients with positive symptoms of psychosis during or after controlling all sensory components.

LIGAND BINDING CHARACTERISTICS OF $K_2$- OPIOID RECEPTOR AND ITS ROLE IN REGULATION OF 〔$^3$H〕HISTAMINE RELEASE IN FRONTAL CORTEX OF THE RAT

  • Kim, Kee-Won-;Park, Kyu--Cho
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.04a
    • /
    • pp.305-305
    • /
    • 1994
  • It has been shown that there are several subtypes of $\kappa$ opioid receptor, We have evaluated the properties of non-${\mu}$, non-$\delta$ binding of 〔$^3$H〕DIP, a nonselective opioid antagonist, in rat cortex membranes. Binding to ${\mu}$ and $\delta$ sites was inhibited by the use of an excess of competing selective agonists (DAMGO, DPDPE) for these sites. (-)Ethylketocyclazocine(EKC) inhibited 〔$^3$H〕DIP binding with Ki. of 70 nM. However, arylacetamides (U69593 and U50488H) gave little inhibition. Also, we have examined the opioid modulation of K$\^$+/(30 mM)-induced histamine release in rat frontal cortex slices labeled with 1-〔$^3$H〕histidine. The 〔$^3$H〕histamine release from cortex slices was inhibited by EKC, a $\kappa$$_1$-and $\kappa$$_2$-agonist, in a concentration-dependent manner(10 to 10,000 nM). The IC$\sub$50/ of EKC was 107 ${\pm}$ 6 nM. However, the $\delta$ receptor selective agonists, DPDPE and deltorphine II, ${\mu}$ receptor agonists, DAMGO and TAPS, $\kappa$$_1$-agonists, U69593 and U50488H, and $\varepsilon$-agonist, ${\beta}$-endorphin, did not inhibit histamine release even in micromoiar dose, indicating that ${\mu}$, $\delta$ or $\kappa$$_1$ receptors are not involved. The concentration-response curve of EKC was shifted to right in the presence of naloxone (300 nM), a ${\mu}$ preferential antagonist, norbinaltorphimine(300 nM), a $\kappa$$_1$ preferential antagonist and bremazocine(1 nM), a $\kappa$$_1$-agonist and $\kappa$$_2$-antagonist. These results suggest that $\kappa$$_2$ opioid receptor regulates histamine release in the frontal cortex of the rat.

  • PDF

Xylazine-induced depression and its antagonism by α-adrenergic blocking agents (Xylazine의 진정효과와 α-adrenergic 수용체 봉쇄약물의 길항효과)

  • Kim, Chung-hui;Hah, Dae-sik;Kim, Yang-mi;Kim, Jong-shu
    • Korean Journal of Veterinary Research
    • /
    • v.33 no.1
    • /
    • pp.71-80
    • /
    • 1993
  • The central nervous system depressant effect of xylazine and xylazine-ketamine was studied in chicken and mice. Intraperitoneal injection of xylazine(1~30 mg/kg) and xylazine(1~30 mg/kg)-ketamine(100 mg/kg) induced a loss of the righting reflex in chicken and mice, respectively. These effects of xylazine were dose-dependent. The results obtained were as follows; 1. The effect of xylazine-induced depression was antagonized by adrenergic antagonists having ${\alpha}_2$-blocking activity(yohimbine, tolazoline, piperoxan and phentolamine). 2. Yohimbine was most effective in the reduction of the CNS depression by xylazine. 3. Phenoxybenzamine and prazosin did not reduced CNS depression by xylazine in both species. 4. Labetalol (${\alpha}_1$, ${\beta}_1$-adrenergic antagonist) and propranolol(${\beta}$-adrenergic blocking agent) were not effective in reducing xylazine induced depression. 5. Cholinergic blocking agents (atropine and mecamylamine), a dopaminergic antagonist (Haloperidol), a histamine $H_1$-antagonist(chlorpheniramine), a histamine $H_2$-antagonist(cimetidine), a serotonergic-histamine $H_1$ antagonist(cyproheptadine) were not effective in reducing xylazine-induced depression. 6. Xylazine-induced depression is mediated by ${\alpha}_2$-adrenergic receptors and appears not to be involved in cholinergic, dopaminergic, serotonergic or histaminergic pathways.

  • PDF

Progress of Pruritus Research in Atopic Dermatitis

  • Lee, Chang-Hoon
    • Biomolecules & Therapeutics
    • /
    • v.18 no.3
    • /
    • pp.246-256
    • /
    • 2010
  • Atopic dermatitis is a common skin disease affecting up to 10% of children and approximately 2% of adults. Atopic dermatitis exhibits four major symptoms, including intense itching, dry skin, redness and exudation. The "itch-scratch-itch" cycle is one of the major features in atopic dermatitis. The pathophysiology and neurobiology of pruritus is unclear. Currently there are no single and universally effective pharmacological antipruritic drugs for treatment of atopic dermatitis. Thus, controlling of itch is a very important unmet need in patients suffering from atopic dermatitis. This article will update progress during the past 10 years of research in the field of pruritus of atopic dermatitis, focusing on aspects of pruritogens (including inflammatory lipids, histamine, serotonin, proteinases, proteinase-activating receptors, neurotransmitters, neuropeptides, and opioid peptides), antipruritic therapies, and emerging new targets. Based on recent progress, researchers expect to identify exciting possibilities for improved treatments and to develop new antipruritic drugs acting through novel targets, such as histamine H4 receptor, gastrin-releasing peptide receptor, MrgprA3, thromboxane A2 receptor and the putative SPC receptor.

General Pharmacology of Recombinant Human Granulocyte-Macrophage Colony Stimulating Factor Expressed in Saccharomyces cerevisiae (효모에서 발현된 유전자 재조합 인간 GM-CSF의 일반 약리작용)

  • 이은방;김운자
    • YAKHAK HOEJI
    • /
    • v.35 no.2
    • /
    • pp.135-141
    • /
    • 1991
  • The general pharmacological tests with rhGM-CSF indicated that it had no influences on rotarod and locomotor activity tests, but shortened hexobarbital-sleeping time at the large dose of 3 mg/kg s.c. in mice. It elicited no hypothermic, analgesic and antiepileptic action. No influences on blood pressure and respiration in rabbits were observed at the dose of 1 mg/kg, i.v. and it did neither affect the receptors of adrenaline, acetylcholine, serotonin, histamine, kinin and oxytocin, nor antagonize the actions of histamine, serotonin and oxytocin at its concentrations of 1$\times$$10^{-6}$g/ml. However, this substance was demonstrated to stimulate the formation of leucocytes in rats.

  • PDF

$H_2$ Receptor-Mediated Relaxation of Circular Smooth Muscle in Human Gastric Corpus: the Role of Nitric Oxide (NO)

  • Lee, Sang Eok;Kim, Dae Hoon;Kim, Young Chul;Han, Joung-Ho;Choi, Woong;Kim, Chan Hyung;Jeong, Hye Won;Park, Seon-Mee;Yun, Sei Jin;Choi, Song-Yi;Sung, Rohyun;Kim, Young Ho;Yoo, Ra Young;Park, Hee Sun;Kim, Heon;Song, Young-Jin;Xu, Wen-Xie;Yun, Hyo-Yung;Lee, Sang Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.5
    • /
    • pp.425-430
    • /
    • 2014
  • This study was designed to examine the effects of histamine on gastric motility and its specific receptor in the circular smooth muscle of the human gastric corpus. Histamine mainly produced tonic relaxation in a concentration-dependent and reversible manner, although histamine enhanced contractility in a minor portion of tissues tested. Histamine-induced tonic relaxation was nerve-insensitive because pretreatment with nerve blockers cocktail (NBC) did not inhibit relaxation. Additionally, $K^+$ channel blockers, such as tetraethylammonium (TEA), apamin (APA), and glibenclamide (Glib), had no effect. However, $N^G$-nitro-L-arginine methyl ester (L-NAME) and 1H-(1,2,4)oxadiazolo (4,3-A) quinoxalin-1-one (ODQ), an inhibitor of soluble guanylate cyclase (sGC), did inhibit histamine-induced tonic relaxation. In particular, histamine-induced tonic relaxation was converted to tonic contraction by pretreatment with L-NAME. Ranitidine, the $H_2$ receptor blocker, inhibited histamine-induced tonic relaxation. These findings suggest that histamine produced relaxation in circular smooth muscle of human gastric smooth muscle through $H_2$ receptor and NO/sGC pathways.

Relative potency of antihistaminics for $H_1$-and muscarinic receptors (항 히스타민제의 $H_1$ 수용체와 무스카린 수용체에 대한 상대적 역가)

  • 이신웅;박영주;이정수
    • YAKHAK HOEJI
    • /
    • v.37 no.4
    • /
    • pp.397-407
    • /
    • 1993
  • The muscarinic antagonist l-[benzilic-4,4'-$^3H$]quinuclidinyl benzilate([$^3H$]QNB) bound to a single class of muscarinic receptor with high affinity in guinea pig ileal membranes. The $K_{D}$ and B$_{max}$ values for [$^3H$]QNB calculated from analysis of saturation isotherms were 54 pM and 156fmol/mg, respectively. H$_{1}$-blockers inhibited [$^3H$]QNB binding to ileal membranes with $K_{i}$ values ranged from 0.008 $\mu{M}$ to 1.6 $\mu{M}$. The pseudo-Hill coefficients of H$_{1}$-blockers for inhibition of [$^3H$]QNB binding to the ileal membranes were close to unit. The $K_{i}$ values for H$_{1}$-blockers were similar to the $K_{M}$ values calculated by Schild plot of functional data obtained from inhibition of the carbachol-induced contraction in guinea-pig ileum, suggesting that binding of H$_{1}$-blockers vs [$^3H$]QNB in ileal membranes represents an interaction with a receptor of physiological relevance. The $K_{H}$ values of H$_{1}$-blockers for H$_{1}$-receptor estimated from inhibition of the histamine-induced contraction were the range of 0.15 nM to 56.5 nM. The $K_{M}$/K$_{H}$ ratio of H$_{1}$-blockers varied over a wide range of 3 to 2300. Thus, the antihistaminic potencies of H$_{1}$-blockers do not correlate with their antimuscarinic potencies, which suggest that antihistamines have different antimuscarinic potencies in therapeutic blood levels causing similar antiallergic effect. Among 13 traditional antihistaminics examined in this study, drug having the highest and the lowest $K_{M}$/K$_{H}$ ratio is triprolidine and diphenidol, respectively. The present results demonstrate that the antimuscarinic property of antihistamines is not necessary for their antiallergic effect, and data on the affinity of antihistamines for muscarinic and H$_{1}$-receptors can be an important parameter in the selection and evaluation of these drugs.

  • PDF

Assessment of antinociceptive property of Cynara scolymus L. and possible mechanism of action in the formalin and writhing models of nociception in mice

  • Pegah Yaghooti;Samad Alimoahmmadi
    • The Korean Journal of Pain
    • /
    • v.37 no.3
    • /
    • pp.218-232
    • /
    • 2024
  • Background: Cynara scolymus has bioactive constituents and has been used for therapeutic actions. The present study was undertaken to investigate the mechanisms underlying pain-relieving effects of the hydroethanolic extract of C. scolymus (HECS). Methods: The antinociceptive activity of HECS was assessed through formalin and acetic acid-induced writhing tests at doses of 50, 100 and 200 mg/kg intraperitoneally. Additionally, naloxone (non-selective opioid receptors antagonist, 2 mg/kg), atropine (non-selective muscarinic receptors antagonist, 1 mg/kg), chlorpheniramine (histamine H1-receptor antagonist, 20 mg/kg), cimetidine (histamine H2-receptor antagonist, 12.5 mg/kg), flumazenil (GABAA/BDZ receptor antagonist, 5 mg/kg) and cyproheptadine (serotonin receptor antagonist, 4 mg/kg) were used to determine the systems implicated in HECS-induced analgesia. Impact of HECS on locomotor activity was executed by open-field test. Determination of total phenolic content (TPC) and total flavonoid content (TFC) was done. Evaluation of antioxidant activity was conducted employing 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay. Results: HECS (50, 100 and 200 mg/kg) significantly indicated dose dependent antinociceptive activity against pain-related behavior induced by formalin and acetic acid (P < 0.001). Pretreatment with naloxone, atropine and flumazenil significantly reversed HECS-induced analgesia. Antinociceptive effect of HECS remained unaffected by chlorpheniramine, cimetidine and cyproheptadine. Locomotor activity was not affected by HECS. TPC and TFC of HECS were 59.49 ± 5.57 mgGAE/g dry extract and 93.39 ± 17.16 mgRE/g dry extract, respectively. DPPH free radical scavenging activity (IC50) of HECS was 161.32 ± 0.03 ㎍/mL. Conclusions: HECS possesses antinociceptive activity which is mediated via opioidergic, cholinergic and GABAergic pathways.