• Title/Summary/Keyword: hippocampal formation

Search Result 42, Processing Time 0.023 seconds

Neuroprotective Activity of Spirulina maxima Hot Ethanol Extract (스피루리나 에탄올 추출물의 신경세포 보호활성)

  • Ryu, Gahee;Ma, Choong Je
    • Korean Journal of Pharmacognosy
    • /
    • v.52 no.3
    • /
    • pp.149-156
    • /
    • 2021
  • Excessive glutamate can cause oxidative stress in neuronal cells and this can be the reason for neurodegenerative disease. In this study, we investigated the protective effect of Spirulina maxima hot ethanol extract on mouse hippocampal HT22 cell of which glutamate receptor has no function. HT22 cells were pre-treated with S. maxima sample at a dose dependent manner (1, 10 and 100 ㎍/ml). After an hour, glutamate was treated. Cell viability, reactive oxygen species (ROS) accumulation, Ca2+ influx, decrease of mitochondrial membrane potential level and glutathione related assays were followed by then. S. maxima ethanol extract improved the cell viability by suppressing the ROS and Ca2+ formation, retaining the mitochondrial membrane potential level and protecting the activity of the antioxidant enzymes compared with group of vehicle-treated controls. These suggest that S. maxima may decelerate the neurodegeneration by attenuating neuronal damage and oxidative stress.

Neuroprotective Activity of Boesenbergia rotunda Against Glutamate Induced Oxidative Stress in HT22 Cells (글루타메이트에 의해 산화적 스트레스를 받은 HT22 세포에서 핑거루트의 신경세포 보호활성)

  • Kim, Eun Seo;Ma, Choong Je
    • Korean Journal of Pharmacognosy
    • /
    • v.53 no.2
    • /
    • pp.79-86
    • /
    • 2022
  • Excessive glutamate causes oxidative stress in neuronal cells, which can cause degenerative neurological disorders. We tried to find medicinal plant showed neuroprotective activity by using glutamate-injured HT22 cell as a model system. In this study, we found that Boesenbergia rotunda methanol extract showed neuroprotective activity against glutamate induced neurotoxicity in mouse hippocampal HT22 cells. B. rotunda methanol extract suppressed the formation of reactive oxygen species and decreased intracellular Ca2+concentration. Also, B. rotunda made mitochondrial membrane potential maintain to normal levels. In addition, B. rotunda increased total glutathione amount and activated antioxidative enzyme such as glutathione reductase and glutathione peroxidase compared to glutamate-treated groups. These results suggested that B. rotunda decreased neuronal cell death damaged by high concentrations of glutamate treatment, via antioxidative mechanism and might be one of candidate of development of new drug to treat neurodegenerative disease such as Alzheimer's disease.

The Characteristics of Supramammillary Cells Projecting to the Hippocampus in Stress Response in the Rat

  • Choi, Woong-Ki;Wirtshafter, David;Park, Hyun-Jung;Lee, Mi-Sook;Her, Song;Shim, In-Sop
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.1
    • /
    • pp.17-24
    • /
    • 2012
  • The hypothalamus-pituitary-adrenocortex (HPA) axis is the central mediator of the stress response. The supramammillary (SuM) region is relatively unique among the hypothalamic structures in that it sends a large, direct projection to the hippocampal formation. It has been shown that mild stress could activate the SuM cells that project to the hippocampus. However, the role of these cell populations in modulating the stress response is not known. The present study examined the effect of stress on different populations of SuM cells that project to the hippocampus by injecting the fluorescent retrograde tracer, fluorogold (FG), into the hippocampus and utilizing the immunohistochemistry of choline acetyltransferase (ChAT), corticotrophin releasing factor (CRF), serotonin (5-HT), glutamate decarboxylase (GAD), tyrosine hydroxylase (TH) and NADPH-d reactivity. Immobilization (IMO) stress (2 hr) produced an increase in the expression of ChAT- immunoreactivity, and tended to increase in CRF, 5-HT, GAD, TH-immunoreactivity and nitric oxide (NO)-reactivity in the SuM cells. Fifty-three percent of 5-HT, 31% of ChAT and 56% of CRF cells were double stained with retrograde cells from the hippocampus. By contrast, a few retrogradely labeled cells projecting to the hippocampus were immunoreactive for dopamine, ${\gamma}$-aminobutyric acid (GABA) and NO. These results suggest that the SuM region contains distinct cell populations that differentially respond to stress. In addition, the findings suggest that serotonergic, cholinergic and corticotropin releasing cells projecting to the hippocampus within the SuM nucleus may play an important role in modulating stress-related behaviors.

Phorbol 12-Myristate 13-Acetate Enhances Long-Term Potentiation in the Hippocampus through Activation of Protein Kinase $C{\delta}$ and ${\varepsilon}$

  • Kim, Eung Chang;Lee, Myeong Jong;Shin, Sang Yep;Seol, Geun Hee;Han, Seung Ho;Yee, Jaeyong;Kim, Chan;Min, Sun Seek
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.1
    • /
    • pp.51-56
    • /
    • 2013
  • Many intracellular proteins and signaling cascades contribute to the sensitivity of N-methyl-D-aspartate receptors (NMDARs). One such putative contributor is the serine/threonine kinase, protein kinase C (PKC). Activation of PKC by phorbol 12-myristate 13-acetate (PMA) causes activation of extracellular signal-regulated kinase (ERK) and promotes the formation of new spines in cultured hippocampal neurons. The purpose of this study was to examine which PKC isoforms are responsible for the PMA-induced augmentation of long-term potentiation (LTP) in the CA1 stratum radiatum of the hippocampus in vitro and verify that this facilitation requires NMDAR activation. We found that PMA enhanced the induction of LTP by a single episode of theta-burst stimulation in a concentration-dependent manner without affecting to magnitude of baseline field excitatory postsynaptic potentials. Facilitation of LTP by PMA (200 nM) was blocked by the nonspecific PKC inhibitor, Ro 31-8220 ($10{\mu}M$); the selective $PKC{\delta}$ inhibitor, rottlerin ($1{\mu}M$); and the $PKC{\varepsilon}$ inhibitor, TAT-${\varepsilon}V1$-2 peptide (500 nM). Moreover, the NMDAR blocker DL-APV ($50{\mu}M$) prevented enhancement of LTP by PMA. Our results suggest that PMA contributes to synaptic plasticity in the nervous system via activation of $PKC{\delta}$ and/or $PKC{\varepsilon}$, and confirm that NMDAR activity is required for this effect.

N-Acetyl-D-Glucosamine Kinase Is a Component of Nuclear Speckles and Paraspeckles

  • Sharif, Syeda Ridita;Lee, HyunSook;Islam, Md. Ariful;Seog, Dae-Hyun;Moon, Il Soo
    • Molecules and Cells
    • /
    • v.38 no.5
    • /
    • pp.402-408
    • /
    • 2015
  • Protein O-GlcNAcylation, dictated by cellular UDP-N-acetylglucosamine (UDP-GlcNAc) levels, plays a crucial role in posttranslational modifications. The enzyme GlcNAc kinase (NAGK, E.C. 2.7.1.59) catalyzes the formation of GlcNAc-6-phosphate, which is a major substrate for the biosynthesis of UDP-GlcNAc. Recent studies have revealed the expression of NAGK in different types of cells especially in neuronal dendrites. Here, by immunocytochemistry (ICC) and immunonucleochemistry (INC) of cultured rat hippocampal neurons, HEK293T and GT1-7 cells, we have showed that NAGK immuno-reactive punctae being present in the nucleoplasm colocalized with small nuclear ribonucleoprotein-associated protein N (snRNPN) and p54NRB, which are speckle and paraspeckle markers, respectively. Furthermore, NAGK IR cluster was also found to be colocalized with GTF2H5 (general transcription factor IIH, polypeptide 5) immuno reactive punctae. In addition, relative localization to the ring of nuclear lamin matrix and to GlcNAc, which is highly enriched in nuclear pore complexes, showed that NAGK surrounds the nucleus at the cytoplasmic face of the nuclear outer membrane. By in situ proximity ligation assay (PLA) we confirmed the colocalization of NAGK with snRNPN in the nucleus and in dendrites, while we also verified the interactions of NAGK with p54NRB, and with GTF2H5 in the nucleus. These associations between NAGK with speckle, paraspeckle and general transcription factor suggest its regulatory roles in gene expression.

Hippocampus-dependent cognitive enhancement induced by systemic gintonin administration

  • Kim, Sungmin;Kim, Min-Soo;Park, Kwanghoon;Kim, Hyeon-Joong;Jung, Seok-Won;Nah, Seung-Yeol;Han, Jung-Soo;Chung, ChiHye
    • Journal of Ginseng Research
    • /
    • v.40 no.1
    • /
    • pp.55-61
    • /
    • 2016
  • Background: A number of neurological and neurodegenerative diseases share impaired cognition as a common symptom. Therefore, the development of clinically applicable therapies to enhance cognition has yielded significant interest. Previously, we have shown that activation of lysophosphatidic acid receptors (LPARs) via gintonin application potentiates synaptic transmission by the blockade of $K^+$ channels in the mature hippocampus. However, whether gintonin may exert any beneficial impact directly on cognition at the neural circuitry level and the behavioral level has not been investigated. Methods: In the current study, we took advantage of gintonin, a novel LPAR agonist, to investigate the effect of gintonin-mediated LPAR activation on cognitive performances. Hippocampus-dependent fear memory test, synaptic plasticity in the hippocampal brain slices, and quantitative analysis on synaptic plasticity-related proteins were used. Results: Daily oral administration of gintonin for 1 wk significantly improved fear memory retention in the contextual fear-conditioning test in mice.We also found that oral administration of gintonin for 1 wk increased the expression of learning and memory-related proteins such as phosphorylated cyclic adenosine monophosphate-response element binding (CREB) protein and brain-derived neurotrophic factor (BDNF). In addition, prolonged gintonin administration enhanced long-term potentiation in the hippocampus. Conclusion: Our observations suggest that the systemic gintonin administration could successfully improve contextual memory formation at the molecular and synaptic levels as well as the behavioral level. Therefore, oral administration of gintonin may serve as an effective noninvasive, nonsurgical method of enhancing cognitive functions.

Investigating the Morphology and Kinetics of Three-Dimensional Neuronal Networks on Electro-Spun Microstructured Scaffolds

  • Kim, Dongyoon;Kim, Seong-Min;Kang, Donghee;Baek, Goeun;Yoon, Myung-Han
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.277.2-277.2
    • /
    • 2013
  • Petri dishes and glass slides have been widely used as general substrates for in vitro mammalian cell cultures due to their culture viability, optical transparency, experimental convenience, and relatively low cost. Despite the aforementioned benefit, however, the flat two-dimensional substrates exhibit limited capability in terms of realistically mimicking cellular polarization, intercellular interaction, and differentiation in the non-physiological culture environment. Here, we report a protocol of culturing embryonic rat hippocampal neurons on the electro-spun polymeric network and the results from examination of neuronal cell behavior and network formation on this culture platform. A combinatorial method of laser-scanning confocal fluorescence microscopy and live-cell imaging technique was employed to track axonal outgrowth and synaptic connectivity of the neuronal cells deposited on this model culture environment. The present microfiber-based scaffold supports the prolonged viability of three-dimensionally-formed neuronal networks and their microscopic geometric parameters (i.e., microfiber diameter) strongly influence the axonal outgrowth and synaptic connection pattern. These results implies that electro-spun fiber scaffolds with fine control over surface chemistry and nano/microscopic geometry may be used as an economic and general platform for three-dimensional mammalian culture systems, particularly, neuronal lineage and other network forming cell lines.

  • PDF

The Comparative Effects of Yugmijihwangtang in Donguibogam and Experiment Research Results -Focusing on the Korean Medicine and Traditional Chinese Medicine- (육미지황탕 효능의 동의보감과 실험연구결과의 비교고찰 -한의학과 중의학을 중심으로-)

  • Han, Yoochang;Kim, Myung Dong;Lee, Sundong
    • Herbal Formula Science
    • /
    • v.25 no.2
    • /
    • pp.223-251
    • /
    • 2017
  • Objectives : A lot of experiment results of Yugmijihwangtang(YM) are reported in various kinds of journals. Many of them report on the new effects that are not recorded in the traditional medical texts. So it is necessary to take it into consideration that newly reported effects could be of help to clinical practice, because this process of comparison of Donguibogam and scientific experiment results will have basis to lead into the evidence based medicine. Methods : We compared the effects of in Donguibogam and the experiment results of YM. Results : The effects of YM in Donguibogam are to replenish essence and marrow, and to treat red wen, fatigue, treat hypouresis, urinary sediment, urinary urgency, hematuria, hydrocephalus, speech and movement retardation, yin-deficiency, diabetes mellitus, nonalcoholic fatty liver, melanoma, disability to see near and far sight, tinnitus, hearing loss, alopecia, angiogenesis, cough, cough at night, trachyphonia, and, infantile convulsion. The experiment results of YM since 2000 in both Korea and China are to inhibit atopic dermatitis, renal interstitial fibrosis, anti-oxidant, emphysema, stress, glomerulosclerosis, diabetic nephropathy, chronic glomerulonephritis, hemorrhage, plantar sweating, dermal aging, kidney aging, bone loss, breast cancer, pathological myocardial cell, primary liver cancer, thrombosis, osteoporosis, intrauterine growth retardation, chronic renal failure, IgA nepropathy, slow cerebral development, and hippocampal tissue lesions on the one hand, and to help bone formation, renin-angiotensin- aldosterone system, cerebral recovery, cognitive function and expression, osteoblast proliferation and differentiation, learning and memory, cold-tolerance and oxygen deficit-tolerance and anti-fatigue, endometrial formation, humoral and cell-mediated immunity, immune regulation effect, Hypothalamus-Pituitary-Ovary Axis, and spermatogenesis, on the other hand. Conclusion : When we compared the effects of YM with the experiment results of YM, there existed a considerable gap between them. So, from now on, it is expected that a great effort and consideration are needed to solve these gaps from an academic and clinical point of view.

Panax ginseng as an adjuvant treatment for Alzheimer's disease

  • Kim, Hyeon-Joong;Jung, Seok-Won;Kim, Seog-Young;Cho, Ik-Hyun;Kim, Hyoung-Chun;Rhim, Hyewhon;Kim, Manho;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.42 no.4
    • /
    • pp.401-411
    • /
    • 2018
  • Longevity in medicine can be defined as a long life without mental or physical deficits. This can be prevented by Alzheimer's disease (AD). Current conventional AD treatments only alleviate the symptoms without reversing AD progression. Recent studies demonstrated that Panax ginseng extract improves AD symptoms in patients with AD, and the two main components of ginseng might contribute to AD amelioration. Ginsenosides show various AD-related neuroprotective effects. Gintonin is a newly identified ginseng constituent that contains lysophosphatidic acids and attenuates AD-related brain neuropathies. Ginsenosides decrease amyloid ${\beta}$-protein ($A{\beta}$) formation by inhibiting ${\beta}$- and ${\gamma}$-secretase activity or by activating the nonamyloidogenic pathway, inhibit acetylcholinesterase activity and $A{\beta}$-induced neurotoxicity, and decrease $A{\beta}$-induced production of reactive oxygen species and neuro-inflammatory reactions. Oral administration of ginsenosides increases the expression levels of enzymes involved in acetylcholine synthesis in the brain and alleviates $A{\beta}$-induced cholinergic deficits in AD models. Similarly, gintonin inhibits $A{\beta}$-induced neurotoxicity and activates the nonamyloidogenic pathway to reduce $A{\beta}$ formation and to increase acetylcholine and choline acetyltransferase expression in the brain through lysophosphatidic acid receptors. Oral administration of gintonin attenuates brain amyloid plaque deposits, boosting hippocampal cholinergic systems and neurogenesis, thereby ameliorating learning and memory impairments. It also improves cognitive functions in patients with AD. Ginsenosides and gintonin attenuate AD-related neuropathology through multiple routes. This review focuses research demonstrating that ginseng constituents could be a candidate as an adjuvant for AD treatment. However, clinical investigations including efficacy and tolerability analyses may be necessary for the clinical acceptance of ginseng components in combination with conventional AD drugs.

A Reliable Protocol for transfection of mature primary hippocampal neurons using a neuron-glia co-culture system (신경세포-신경교세포 공동배양을 이용한 성숙한 해마신경세포의 효율적인 형질전환 방법)

  • Lee, Hyun-Sook;Cho, Sun-Jung;Jung, Yong-Wook;Jin, Ing-Nyol;Moon, Il-Soo
    • Journal of Life Science
    • /
    • v.17 no.2 s.82
    • /
    • pp.198-203
    • /
    • 2007
  • DNA transfection is a powerful tool for studying gene functions. The $Ca^{2+}$-phosphate precipitation remains one of the most popular and cost-effective transfection techniques. Mature neurons are more resistant to transfection than young ones and most other cell types, and easy to die if microenvironment changes. Here, we report a transfection protocol for mature neurons. The critical modifications are inclusion of glial cells in culture and careful control of $Ca^{2+}$-phosphate precipitation under microscope. Cerebral glial cells were grown until ${\sim}70-80%$ confluence in DMEM/10% horse serum, which was thereafter replaced with serum-free Neurobasal/Ara-C, and 319 hippocampal neurons were plated onto the glial layer Formation of fine $DNA/Ca^{2+}$-phosphate precipitates was induced using Clontech $CalPhos^{TM}$ Mammalian Transfection Kit, and the size ($0.5-1\;{\mu}m$ in diameter) and density(about 10 particles/$100\;{\mu}m^2$) were carefully controlled by the time of incubation in the medium. This modified protocol can be reliably applied for transfection of mature neurons that are maintained longer than two weeks in vitro, resulting in 10-15 healthy transfected neurons per a well of 24-well plates. The efficacy of the protocol was verified by punctate expression of $pEGFP-CaMKII{\alpha}$, a synaptic protein, and diffuse expression of pDsRed2. Our protocol provides a reliable method for transfection of mature neurons in vitro.